zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
The permanence and global attractivity of Lotka--Volterra competition system with feedback controls. (English) Zbl 1103.34038
The author studies the following Lotka-Volterra type competitive system with feedback control $$\aligned \dot x_i(t)=x_i(t)[b_i(t)-\sum_{j=1}^n a_{ij}(t)x_j(t)-d_i(t)u_i(t)],\\ \dot u_i(t)=r_i(t)-e_i(t)u_i(t)+f_i(t)x_i(t),\quad i=1,2,\dots,n, \endaligned \tag1$$ where $x_i(t)$ represents the density of the $i$th species at time $t$, respectively, $i=1,2,\dots,n$, and $u_i(t)$ is the control variable, $i=1,2,\dots,n$. $a_{ij}(t), b_i(t), d_i(t),$ $ r_i(t), e_i(t), f_i(t)$, $i,j=1,2,\dots, n$, are continuous functions defined on $[c,+\infty)$. Given a function $g(t)$ defined on $[c,+\infty)$, let $g_M=\sup\{g(t)\vert c\leq t<+\infty\}, g_L=\inf\{g(t)\vert c\leq t<+\infty\}.$ It is assumed in (1) that $a_{ij}(t)\geq 0, a_{ijM}<+\infty, a_{ijL}>0, b_i(t)>0, b_{iM}<+\infty, b_{iL}>0, d_i(t)\geq 0, d_{iM}<+\infty, d_{iL}\geq 0, r_i(t)\geq 0, r_{iM}<+\infty, r_{iL}\geq 0, e_i(t)>0, e_{iM}<+\infty, e_{iL}>0, f_i(t)>0, f_{iM}<+\infty$ and $f_{iL}>0$. Some average conditions for the permanence of system (1) and sufficient conditions for the global attractivity of positive solutions of system (1) are derived, respectively. The results developed by {\it J. Zhao, J. Jiang} and {\it A. C. Lazer} [Nonlinear Anal., Real World Appl. 5, 265--276 (2004; Zbl 1085.34040)] are generalized.

MSC:
34D05Asymptotic stability of ODE
34C25Periodic solutions of ODE
92D25Population dynamics (general)
34D20Stability of ODE
34D40Ultimate boundedness (MSC2000)
WorldCat.org
Full Text: DOI
References:
[1] Ahmad, S.: On the nonautonomous Volterra -- Lotka competition equations. Proc. amer. Math. soc. 117, 199-204 (1993) · Zbl 0848.34033
[2] Ahmad, S.; Lazer, A. C.: Average conditions for global asymptotic stability in a nonautonomous Lotka -- Volterra system. Nonlinear anal. 40, 37-49 (2000) · Zbl 0955.34041
[3] Chen, F. D.: Periodicity in a nonlinear predator -- prey system with state dependent delays. Acta math. Appl. sinica engl. Ser. 21, No. 1, 1-10 (2005)
[4] Chen, F. D.: Positive periodic solutions of neutral Lotka -- Volterra system with feedback control. Appl. math. Comput. 162, No. 3, 1279-1302 (2005) · Zbl 1125.93031
[5] Chen, F. D.; Lin, S. J.: Periodicity in a logistic type system with several delays. Comput. math. Appl. 48, No. 1 -- 2, 35-44 (2004) · Zbl 1061.34050
[6] Chen, F. D.; Lin, F. X.; Chen, X. X.: Sufficient conditions for the existence of positive periodic solutions of a class of neutral delay models with feedback control. Appl. math. Comput. 158, No. 1, 45-68 (2004) · Zbl 1096.93017
[7] Chen, F. D.; Sun, D. X.; Lin, F. X.: Periodicity in a food-limited population model with toxicants and state dependent delays. J. math. Anal. appl. 288, No. 1, 132-142 (2003)
[8] Fan, M.; Wong, P. J. Y.; Agarwal, R. P.: Periodicity and stability in periodic n-species Lotka -- Volterra competition system with feedback controls and deviating arguments. Acta math. Sinica 19, No. 4, 801-822 (2003) · Zbl 1047.34080
[9] Gopalsamy, K.: Global asymptotic stability in a periodic Lotka -- Volterra system. J. austral. Math. soc. Ser. B 27, 66-72 (1985) · Zbl 0588.92019
[10] Gopalsamy, K.; Weng, P. X.: Feedback regulation of logistic growth. Internat. J. Math. sci. 16, No. 1, 177-192 (1993) · Zbl 0765.34058
[11] He, C.: On almost periodic solutions of Lotka -- Volterra almost periodic competition systems. Ann. differential equations 9, No. 1, 26-36 (1993) · Zbl 0781.34037
[12] Huang, Z. K.; Chen, F. D.: Almost periodic solution of two species model with feedback regulation and infinite delay. J. eng. Math. 20, No. 5, 33-40 (2004) · Zbl 1138.34344
[13] Huo, H.; Li, W.: Positive periodic solutions of a class of delay differential system with feedback control. Appl. math. Comput. 148, No. 1, 35-46 (2004) · Zbl 1057.34093
[14] Li, X. Y.; Fan, M.; Wang, K.: Positive periodic solution of single species model with feedback regulation and infinite delay. Appl. math. J. chin. Univ. ser. A 17, No. 1, 13-21 (2002) · Zbl 1005.34039
[15] Teng, Z.: The almost periodic komogorov competitive systems. Nonlinear analysis 42, 1221-1230 (2000) · Zbl 1135.34319
[16] Tineo, A.: An iterative scheme for the N-competing species problem. J. differential equations 116, 1-15 (1995) · Zbl 0823.34048
[17] Tineo, A.; Alvarz, C.: A different consideration about the globally asymptotically stable solution of the periodic n-competing species problem. J. math. Anal. appl. 159, 44-55 (1991) · Zbl 0729.92025
[18] Weng, P. X.: Global attractivity in a periodic competition system with feedback controls. Acta appl. Math. 12, 11-21 (1996) · Zbl 0859.34061
[19] Weng, P. X.: Existence and global stability of positive periodic solution of periodic integro-differential systems with feedback controls. Comput. math. Appl. 40, 747-759 (2000) · Zbl 0962.45003
[20] Xia, Y. H.; Cao, J. D.; Zhang, H. Y.; Chen, F. D.: Almost periodic solutions in n-species competitive system with feedback controls. J. math. Anal. appl. 294, 504-522 (2004) · Zbl 1053.34040
[21] Xiao, Y. N.; Tang, S. Y.; Chen, J. F.: Permanence and periodic solution in competition system with feedback controls. Math. comput. Model. 27, No. 6, 33-37 (1998) · Zbl 0896.92032
[22] Yang, F.; Jiang, D. Q.: Existence and global attractivity of positive periodic solution of a logistic growth system with feedback control and deviating arguments. Ann. differential equations 17, No. 4, 337-384 (2001) · Zbl 1004.34030
[23] Yin, F. Q.; Li, Y. K.: Positive periodic solutions of a single species model with feedback regulation and distributed time delay. Appl. math. Comput. 153, 475-484 (2004) · Zbl 1087.34051
[24] Zhao, X. Q.: The qualitative analysis of n-species Lotka -- Volterra periodic competition systems. Math. comput. Model. 15, No. 11, 3-8 (1991) · Zbl 0756.34048
[25] Zhao, J. D.; Jiang, J. F.; Lazer, A. C.: The permanence and global attractivity in a nonautonomous Lotka -- Volterra system. Nonlinear anal.real world appl. 5, 265-276 (2004) · Zbl 1085.34040