Linares, F.; Navas, A. On Schrödinger-Boussinesq equations. (English) Zbl 1103.35094 Adv. Differ. Equ. 9, No. 1-2, 159-176 (2004). Summary: We study local and global well-posedness for the initial-value problem associated to the one-dimensional Schrödinger-Boussinesq equations \[ i\partial_tu+\partial^2_xu=uv+\alpha|u|^2u,\quad x\in \mathbb{R},\;t>0, \]\[ \partial^2_tv-\partial^2_xv+\partial^4_xv= \partial^2_x \bigl(\beta|v|^{p-1}v+|u|^2\bigr), \] in low regularity spaces. To establish these results we use sharp \(L^p\)-\(L^q\) estimates. Cited in 4 Documents MSC: 35Q55 NLS equations (nonlinear Schrödinger equations) 78A60 Lasers, masers, optical bistability, nonlinear optics 35Q35 PDEs in connection with fluid mechanics 76B15 Water waves, gravity waves; dispersion and scattering, nonlinear interaction Keywords:interaction of solitons in optics; nonlinear Schrödinger equation; local and global well-posedness PDF BibTeX XML Cite \textit{F. Linares} and \textit{A. Navas}, Adv. Differ. Equ. 9, No. 1--2, 159--176 (2004; Zbl 1103.35094) OpenURL