Costabel, Martin; Dauge, Monique; Duduchava, Roland Asymptotics without logarithmic terms for crack problems. (English) Zbl 1103.35321 Commun. Partial Differ. Equations 28, No. 5-6, 869-926 (2003). Summary: We consider boundary value problems for elliptic systems in a domain complementary to a smooth surface with boundary, which models a crack with its edge. The same boundary conditions are prescribed on both sides of the surface. We prove that the singular functions appearing in the expansion of the solution along the crack edge all have the form in local polar coordinates: The logarithmic shadow terms predicted by the general theory do not appear. Moreover, we obtain that, for a smooth right hand side, the jump of the displacement across the crack surface is the product of \(r^{1/2}\)with a smooth vector function. We present two different, but complementing, approaches leading to these results, and providing distinct generalizations. The first one is based on a Wiener–Hopf factorization of the pseudodifferential symbol on the surface obtained after reduction of the boundary value problem. The second approach concerns directly the boundary value problem and is based on a closer look at the Mellin symbol at each point of the crack edge. Cited in 36 Documents MSC: 35J55 Systems of elliptic equations, boundary value problems (MSC2000) 35Q72 Other PDE from mechanics (MSC2000) 47G30 Pseudodifferential operators 74G10 Analytic approximation of solutions (perturbation methods, asymptotic methods, series, etc.) of equilibrium problems in solid mechanics 74R10 Brittle fracture × Cite Format Result Cite Review PDF Full Text: DOI References: [1] DOI: 10.1002/cpa.3160170104 · Zbl 0123.28706 · doi:10.1002/cpa.3160170104 [2] DOI: 10.1103/PhysRevLett.70.2829 · Zbl 1051.83507 · doi:10.1103/PhysRevLett.70.2829 [3] DOI: 10.1006/jmaa.1993.1360 · Zbl 0802.35175 · doi:10.1006/jmaa.1993.1360 [4] DOI: 10.1007/BF02392024 · Zbl 0206.39401 · doi:10.1007/BF02392024 [5] Chazarain J., Introduction to the Theory of Linear Partial Differential Equations (1982) · Zbl 0487.35002 [6] Chkadua O., Memoirs on Mathematical Physics and Differential Equations 15 pp 29– (1998) [7] Chkadua O., Russian Journal of Mathematical Physics 7 pp 15– (2000) [8] DOI: 10.1002/1522-2616(200102)222:1<79::AID-MANA79>3.0.CO;2-3 · Zbl 0985.47019 · doi:10.1002/1522-2616(200102)222:1<79::AID-MANA79>3.0.CO;2-3 [9] Costabel M., Proc. Royal Soc. Edinburgh 123 pp 109– (1993) · Zbl 0791.35032 · doi:10.1017/S0308210500021272 [10] DOI: 10.1002/mana.19931620117 · Zbl 0802.35032 · doi:10.1002/mana.19931620117 [11] Costabel M., Comm. Partial Differential Equations 9 pp 1677– (1994) · Zbl 0814.35024 · doi:10.1080/03605309408821068 [12] DOI: 10.1002/1522-2616(200202)235:1<29::AID-MANA29>3.0.CO;2-6 · Zbl 1094.35038 · doi:10.1002/1522-2616(200202)235:1<29::AID-MANA29>3.0.CO;2-6 [13] DOI: 10.1007/BF01201149 · Zbl 0632.73091 · doi:10.1007/BF01201149 [14] Dauge M., Lecture Notes in Mathematics 1341 (1988) [15] Duduchava R., Journal of Operator Theory 11 pp 41– (1984) · Zbl 0587.45007 [16] DOI: 10.1002/mana.19981910105 · Zbl 0901.73016 · doi:10.1002/mana.19981910105 [17] DOI: 10.1007/BF02257474 · Zbl 0822.35135 · doi:10.1007/BF02257474 [18] Duduchava R., Mathematical Methods in Applied Sciences 221 pp 413– (1999) [19] DOI: 10.1007/BF01198487 · Zbl 1126.35368 · doi:10.1007/BF01198487 [20] Eskin G., Boundary Value Problems for Elliptic Pseudodifferential Equations (1981) · Zbl 0458.35002 [21] Grisvard P., Boundary Value Problems in Non-Smooth Domains (1985) · Zbl 0695.35060 [22] DOI: 10.1007/BF00286498 · Zbl 0706.73013 · doi:10.1007/BF00286498 [23] Hörmander L., The Analysis of Linear Partial Differential Operators, v.I–IV (1983) [24] Kondrat’ev V., Trans. Moscow Math. Soc. 16 pp 227– (1967) [25] Kondrat’ev V. A., Differential Equations 13 pp 1411– (1970) [26] Kozlov V., Leningrad Math. J. 4 pp 967– (1990) [27] Kozlov V., Spectral Problems Associated with Corner Singularities of Solutions to Elliptic Equations (2001) · Zbl 0965.35003 [28] Kozlov V., Proc. Roy. Soc. Edinburgh Sect. A 117 pp 31– (1991) · Zbl 0728.73057 · doi:10.1017/S030821050002758X [29] Kupradze V., Three-Dimensional Problems of the Mathematical Theory of Elasticity and Thermoelasticity (1979) · Zbl 0421.73009 [30] Mazzeo, R. Edge operators in geometry. Symposium ”Analysis on Manifolds with Singularities” (Breitenbrunn, 1990)Teubner-Texte Math.Vol. 131, pp.127–137. [31] Maz’ya V. G., Amer. Math. Soc. Transl. (2) 123 pp 1– (1984) · Zbl 0554.35035 · doi:10.1090/trans2/123/01 [32] Maz’ya V., Trans. Moscow Math. Soc. 1 pp 49– (1980) [33] DOI: 10.1002/mana.19881380103 · Zbl 0672.35020 · doi:10.1002/mana.19881380103 [34] Nazarov S., Expositions in Mathematics 13 (1994) [35] DOI: 10.1007/BF02364945 · Zbl 0847.35024 · doi:10.1007/BF02364945 [36] Nazarov S., St. Petersburg Math. J. 6 pp 839– (1995) [37] Nikishkin A., Moscow Univ. Math. Bull. 34 pp 53– (1979) [38] Schulze B.-W., Boundary Value Problems and Pseudo-Differential Operators (1998) [39] DOI: 10.1007/978-3-0346-0416-1 · Zbl 1235.46002 · doi:10.1007/978-3-0346-0416-1 [40] DOI: 10.1007/BF02384079 · Zbl 0725.73091 · doi:10.1007/BF02384079 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.