×

zbMATH — the first resource for mathematics

The statistical work of Lucien Le Cam. (English) Zbl 1103.62301
Summary: We give an overview and appraisal of the scientific work in theoretical statistics, and its impact, by Lucien Le Cam. The references to Le Cam’s papers refer to the Le Cam bibliography. The reference is the first paper for the given year if not stated.

MSC:
62-03 History of statistics
01A70 Biographies, obituaries, personalia, bibliographies
62A01 Foundations and philosophical topics in statistics
62B15 Theory of statistical experiments
Biographic References:
Le Cam, Lucien
PDF BibTeX XML Cite
Full Text: DOI Euclid
References:
[1] BAHADUR, R. R. (1964). On Fisher’s bound for asy mptotic variances. Ann. Math. Statist. 35 1545- 1552. · Zbl 0218.62034
[2] BASAWA, I. V. and SCOTT D. J. (1983). Asy mptotic Optimal Inference for Nonergodic Models. Lecture Notes in Statist. 17. Springer, New York.
[3] BEGUN, J. M., HALL, W. J., HUANG, W. M. and WELLNER, J. A. (1983). Information and asy mptotic efficiency in parametric-nonparametric models. Ann. Statist. 11 432-452. · Zbl 0526.62045
[4] BERGER, J. O. and WOLPERT, R. L. (1988). The Likelihood Principle, 2nd ed. IMS, Hay ward, CA.
[5] BICKEL, P. J., KLAASSEN, C. A. J., RITOV, Y. and WELLNER, J. A. (1993). Efficient and Adaptive Estimation for Semiparametric Models. Johns Hopkins Univ. Press. · Zbl 0786.62001
[6] BIRGÉ, L. (1983). Approximation dans les espaces métriques et théorie de l’estimation. Z. Wahrsch. Verw. Gebiete 65 181-238. · Zbl 0506.62026
[7] BIRGÉ, L. (1986). On estimating a density using Hellinger distance and some other strange facts. Probab. Theory Related Fields 71 271-291. · Zbl 0561.62029
[8] BIRGÉ, L. and MASSART, P. (1993). Rates of convergence for minimum contrast estimators. Probab. Theory Related Fields 97 113-150. · Zbl 0805.62037
[9] BIRGÉ, L. and MASSART, P. (1998). Minimum contrast estimators on sieves: Exponential bounds and rates of convergence. Bernoulli 4 329-375. · Zbl 0954.62033
[10] BLACKWELL, D. (1951). Comparison of experiments. Proc. Second Berkeley Sy mp. Math. Statist. Probab. 93-102. Univ. California Press, Berkeley. · Zbl 0044.14203
[11] BLACKWELL, D. (1953). Equivalent comparisons of experiments. Ann. Math. Statist. 24 265-272. · Zbl 0050.36004
[12] BOHNENBLUST, H. F., SHAPLEY, L. S. and SHERMAN, S. (1949). Reconnaissance in game theory. RAND Research Memorandum RM-208 1-18.
[13] BOLL, C. (1955). Comparison of experiments in the infinite case. Ph.D. dissertation, Dept. Statist., Stanford Univ.
[14] BOURBAKI, N. (1955). Espaces vectoriels topologiques. Hermann, Paris. · Zbl 0066.35301
[15] BROWN, L. D. and LOW, M. G. (1996). Asy mptotic equivalence of nonparametic regression and white noise. Ann. Statist. 24 2384-2398. · Zbl 0867.62022
[16] CHERNOFF, H. (1956). Large sample theory: Parametric case. Ann. Math. Statist. 27 1-22. · Zbl 0072.35703
[17] DONOHO, D. L. and LIU, R. C. (1991). Geometrizing rates of convergence. II, III. Ann. Statist. 19 633-667, 668-701. · Zbl 0754.62028
[18] DUDLEY, R. M. (1967). The sizes of compact subsets of Hilbert spaces and continuity of Gaussian processes. J. Funct. Anal. 1 290-330. · Zbl 0188.20502
[19] FISHER, R. A. (1922). On the mathematical foundations of theoretical statistics. Philos. Trans. Roy. Soc. London Ser. A 222 309-368. · JFM 48.1280.02
[20] FISHER, R. A. (1925). Theory of statistical estimation. Proc. Cambridge Philos. Soc. 22 700-725. · JFM 51.0385.01
[21] FISHER, R. A. (1935). The Design of Experiments. Oliver and Boy d, Edinburgh.
[22] GHOSAL, S., GHOSH, J. K. and VAN DER VAART, A. W. (2000). Convergence rates of posterior distributions. Ann. Statist. 28 500-531. · Zbl 1105.62315
[23] GRENANDER, U. (1981). Abstract Inference. Wiley, New York. · Zbl 0505.62069
[24] GUSHCHIN, A. A. (1995). Asy mptotic optimality of parameter estimators under the LAQ condition. Theory Probab. Appl. 40 261-272.
[25] HÁJEK, J. (1962). Asy mptotically most powerful rank-order tests. Ann. Math. Statist. 33 1124-1147. · Zbl 0133.42001
[26] HÁJEK, J. (1970). A characterization of limiting distributions of regular estimates. Z. Wahrsch. Verw. Gebiete 14 323-330. · Zbl 0193.18001
[27] HÁJEK, J. (1972). Local asy mptotic minimax and admissibility in estimation. Proc. Sixth Berkeley Sy mp. Math. Statist. Probab. 1 175-194. Univ. California Press, Berkeley.
[28] HÁJEK, J. and SIDÁK, Z. (1967). Theory of Rank Tests. Academic Press, New York.
[29] HEy ER, H. (1973). Mathematische Theorie statistischer Experimente. Springer, Berlin. · Zbl 0276.62008
[30] IBRAGIMOV, I. A. and KHASMINSKII, R. Z. (1977). On the estimation of an infinite dimensional parameter in Gaussian white noise. Soviet Math. Dokl. 236 1035-1055. · Zbl 0389.62023
[31] IBRAGIMOV, I. A. and HAS’MINSKII, R. Z. (1981). Statistical Estimation: Asy mptotic Theory. Springer, New York.
[32] JANSSEN, A., MILBRODT, H. and STRASSER, H. (1985). Infinitely Divisible Statistical Experiments. Lecture Notes in Statist. 27. Springer, New York. · Zbl 0566.62001
[33] JEGANATHAN, P. (1982). On the asy mptotic theory of estimation when the limit of the log likelihood ratios is mixed normal. Sankhy\?a Ser. A 44 173-212. · Zbl 0584.62042
[34] JEGANATHAN, P. (1995). Some aspects of asy mptotic theory with applications to time series models. Econometric Theory 11 818-887. JSTOR: · Zbl 04528928
[35] KOLMOGOROV, A. N. and TIKHOMIROV, V. M. (1961). -entropy and -capacity of sets in function spaces. Amer. Math. Soc. Trans. Ser. 2 17 277-364. · Zbl 0133.06703
[36] KOSHEVNIK, YU. A. and LEVIT, B. YA. (1976). On a nonparametric analogue of the information matrix. Theory Probab. Appl. 21 738-753. · Zbl 0388.62037
[37] KOUL, H. L. and PFLUG, G. C. (1990). Weakly adaptive estimators in explosive autoregression. Ann. Statist. 18 939-960. · Zbl 0709.62083
[38] LUXEMBURG, W. A. J. and ZAANEN, A. C. (1971). Riesz Spaces. North-Holland, Amsterdam. · Zbl 0231.46014
[39] MILLAR, P. W. (1979). Asy mptotic minimax theorems for the sample distribution function. Z. Wahrsch. Verw. Gebiete 48 233-252. · Zbl 0387.62029
[40] MILLAR, P. W. (1983). The minimax principle in asy mptotic statistical theory. École d’Été de Probabilités de St. Flour XI. Lecture Notes in Math. 976 76-267. Springer, New York. · Zbl 0502.62027
[41] MILLAR, P. W. (1985). Non-parametric applications of an infinite-dimensional convolution theorem. Z. Wahrsch. Verw. Gebiete 68 545-556. · Zbl 0571.62031
[42] NEy MAN, J. (1934). On the two different aspects of the representative method: The method of stratified sampling and the method of purposive selection. J. Roy. Statist. Soc. 97 558- 625. · Zbl 0010.07201
[43] NUSSBAUM, M. (1996). Asy mptotic equivalence of density estimation and Gaussian white noise. Ann. Statist. 24 2399-2430. · Zbl 0867.62035
[44] PINSKER, M. S. (1980). Optimal filtering of square integrable signals in Gaussian white noise. Problems Inform. Transmission 16 120-133. · Zbl 0452.94003
[45] PFANZAGL, J. and WEFELMEy ER, W. (1982). Contributions to a General Asy mptotic Statistical Theory. Lecture Notes in Statist. 13. Springer, New York. · Zbl 0512.62001
[46] PFLUG, G. C. (1983). The limiting loglikelihood process for discontinuous density families. Z. Wahrsch. Verw. Gebiete 64 15-35. · Zbl 0525.62034
[47] POLLARD, D., TORGERSEN, E. and YANG, G. L. (eds.) (1997). Festschrift for Lucien Le Cam: Research Papers in Probability and Statistics. Springer, New York. · Zbl 0861.00032
[48] PRAKASA RAO, B. L. S. (1968). Estimation of the location of the cusp of a continuous density. Ann. Math. Statist. 39 76-87. · Zbl 0159.47703
[49] RAO, C. R. (1965). Linear Statistical Inference and Its Applications. Wiley, New York. · Zbl 0137.36203
[50] ROUSSAS, G. G. (1965). Asy mptotic inference in Markov processes. Ann. Math. Statist. 36 978- 992. · Zbl 0138.11601
[51] ROUSSAS, G. G. (1972). Contiguity of Probability Measures: Some Applications in Statistics. Cambridge Univ. Press. · Zbl 0265.60003
[52] SCHAEFER, H. H. (1974). Banach Lattices and Positive Operators. Springer, New York. · Zbl 0296.47023
[53] SHERMAN, S. (1951). On a theorem of Hardy, Littlewood, Poly a, and Blackwell. Proc. Natl. Acad. Sci. U.S.A. 37 826-831. JSTOR: · Zbl 0044.27801
[54] STEIN, C. (1956). Inadmissibility of the usual estimator for the mean of a multivariate normal distribution. Proc. Third Berkeley Sy mp. Math. Statist. Probab. 1 197-206. Univ. California Press, Berkeley. · Zbl 0073.35602
[55] STRASSER, H. (1985). Mathematical Theory of Statistics: Statistical Experiments and Asy mptotic Theory. de Gruy ter, Berlin. · Zbl 0594.62017
[56] TORGERSEN, E. (1968). Comparison of experiments when the parameter space is finite. Ph.D. dissertation, Dept. Statistics, Univ. California, Berkeley. · Zbl 0193.17102
[57] TORGERSEN, E. (1970). Comparison of experiments when the parameter space is finite. Z. Wahrsch. Verw. Gebiete 16 219-249. · Zbl 0193.17102
[58] TORGERSEN, E. (1972). Comparison of translation experiments. Ann. Math. Statist. 43 1383-1399. · Zbl 0252.62004
[59] TORGERSEN, E. (1991). Comparison of Statistical Experiments. Cambridge Univ. Press. · Zbl 0732.62009
[60] VAN DE GEER, S. (1993). Hellinger-consistency of certain nonparametric maximum likelihood estimators. Ann. Statist. 21 14-44. · Zbl 0779.62033
[61] VAN DER VAART, A. W. (1994). Limits of experiments. Lecture notes, Yale Univ. · Zbl 0809.62040
[62] VAN DER VAART, A. W. and WELLNER, J. A. (1996). Weak Convergence and Empirical Processes. With Applications to Statistics. Springer, New York. · Zbl 0862.60002
[63] WALD, A. (1939). Contributions to the theory of statistical estimation and testing hy potheses. Ann. Math. Statist. 10 299-326. · Zbl 0024.05405
[64] WALD, A. (1943). Tests of statistical hy potheses concerning several parameters when the number of observations is large. Trans. Amer. Math. Soc. 54 426-482. JSTOR: · Zbl 0063.08120
[65] WALD, A. (1950). Statistical Decision Functions. Wiley, New York. · Zbl 0040.36402
[66] WONG, W. H. and SHEN, X. (1995). Probability inequalities for likelihood ratios and convergence rates of sieve MLE’s. Ann. Statist. 23 339-362. · Zbl 0829.62002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.