Karlsen, Hans Arnfinn; Tjøstheim, Dag Nonparametric estimation in null recurrent time series. (English) Zbl 1103.62335 Ann. Stat. 29, No. 2, 372-416 (2001). Summary: We develop a nonparametric estimation theory in a nonstationary environment, more precisely in the framework of null recurrent Markov chains. An essential tool is the split chain, which makes it possible to decompose the times series under consideration into independent and identical parts. A tail condition on the distribution of the recurrence time is introduced. This condition makes it possible to prove weak convergence results for sums of functions of the process depending on a smoothing parameter. These limit results are subsequently used to obtain consistency and asymptotic normality for local density estimators and for estimators of the conditional mean and the conditional variance. In contradistinction to the parametric case, the convergence rate is slower than in the stationary case, and it is directly linked to the tail behavior of the recurrence time. Applications to econometric, and in particular to cointegration models, are indicated. Cited in 63 Documents MSC: 62G07 Density estimation 62G20 Asymptotic properties of nonparametric inference 62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH) 62M05 Markov processes: estimation; hidden Markov models Keywords:Nonstationary time series models; null recurrent Markov chain; nonparametric kernel estimators; split chain × Cite Format Result Cite Review PDF Full Text: DOI Euclid References: [1] Aparicio, F. M. and Escribano, A. (1997). Searching for linear and nonlinear cointegration: a new approach. Working paper 97-65, Univ. Carlos III de Madrid, Statistics and Economics Series. [2] Bergstrøm, H. (1981). Weak Convergence. Academic Press, NewYork. Billingsley, P. (1968). Convergence of Probability. Wiley, NewYork. [3] Bingham, N. H., Goldie, C. M. and Teugels, J. L. (1989). Regular Variation. Cambridge Univ. Press. · Zbl 0667.26003 [4] Chow, Y. S. and Teicher, H. (1988). Probability Theory, 2nd.ed.Springer, NewYork. · Zbl 0652.60001 [5] Darling, D. A. and Kac, M. (1957). On occupation times for Markoff processes.Trans.Amer.Math. Soc. 84 444-458. JSTOR: · Zbl 0078.32005 · doi:10.2307/1992825 [6] Dickey, D. A. and Fuller, W. A. (1979). Distribution of the estimators for autoregressive time series with unit root. Econometrica 49 1057-1072. · Zbl 0413.62075 · doi:10.2307/2286348 [7] Feigin, P. D. and Tweedie, R. L. (1985). Random coefficient autoregressive processes: a Markov chain analysis of stationarity and finiteness of moments. J.Time Ser.Anal.6 1-14. · Zbl 0572.62069 · doi:10.1111/j.1467-9892.1985.tb00394.x [8] Feller, W. R. (1971). An Introduction to Probability Theory and Its Application 2, 2nd. ed. Wiley, NewYork. · Zbl 0219.60003 [9] Granger, C. W. J. (1995). Modelling nonlinear relationships between extended-memory variables. Econometrica 63 265-279. JSTOR: · Zbl 0826.90022 · doi:10.2307/2951626 [10] Granger, C. W. J. and Hallman, J. (1991). Long memory series with attractors. Oxford Bull. Econom.Statist.53 11-26. · Zbl 0721.62088 [11] Hjellvik, V., Yao, Q. and Tjøstheim, D. (1998). Linearity testing using local polynomial approximation. J.Statist.Plann.Inference 68 295-321. · Zbl 0942.62051 · doi:10.1016/S0378-3758(97)00146-8 [12] H öpfner, R. (1990). Null recurrent birth and death processes: limits for certain martingales and local asymptotic mixed normality. Scand.J.Statist.17 201-215. · Zbl 0721.60080 [13] H öpfner, R. (1994). Estimating a parameter in a birth-and-death process model. Statist.Decisions 12 149-160. · Zbl 0816.62071 [14] H öpfner, R., Jacod, J. and Ladelli, L. (1990). Local asymptotic normality and mixed normality for Markov statistical models. Probab.Theory Related Fields 86 105-129. · Zbl 0685.60016 · doi:10.1007/BF01207516 [15] Jacod, J. and Shiryaev, A. N. (1987). Limit Theorems for Stochastic Processes. Springer, Berlin. · Zbl 0635.60021 [16] Johansen, S. (1995). Likelihood-based Inference in Cointegrated Vector Autoregressive Models. Oxford Univ. Press. · Zbl 0928.62069 · doi:10.1093/0198774508.001.0001 [17] Kallianpur, G. and Robbins, H. (1954). The sequence of sums of independent random variables. Duke Math.J.21 285-307. · Zbl 0055.36704 · doi:10.1215/S0012-7094-54-02128-6 [18] Karlsen, H. A., Myklebust, T. and Tjøstheim, D. (2000). Nonparametric estimation in a nonlinear cointegration type model. Sonderforschungsbereich 373 33. Humboldt Univ., Berlin. · Zbl 1114.62089 [19] Karlsen, H. A. and Tjøstheim, D. (1998). Nonparametric estimation in null recurrent time series. Sonderforschungsbereich 373 50. Humboldt Univ., Berlin. · Zbl 1103.62335 [20] Kasahara, Y. (1982). A limit theorem for slowly increasing occupation times. Ann.Probab.10 728-736. · Zbl 0492.60077 · doi:10.1214/aop/1176993780 [21] Kasahara, Y. (1984). Limit theorems for Lévy processes and Poisson point processes and their applications to Brownian excursions. J.Math.Kyoto Univ.24 521-538. · Zbl 0557.60021 [22] Kasahara, Y. (1985). A limit theorem for sums of random number of i.i.d. random variables and its application to occupation times of Markov chains. J.Math.Soc.Japan 37 197-205. · Zbl 0568.60039 · doi:10.2969/jmsj/03720197 [23] Masry, E. and Tjøstheim, D. (1995). Nonparametric estimation and identification of nonlinear ARCH time series. Econometric Theory 11 258-289. JSTOR: · Zbl 1401.62171 · doi:10.1017/S0266466600009166 [24] Masry, E. and Tjøstheim, D. (1997). Additive nonlinear ARX time series and projection estimators. Econometric Theory 13 214-252. [25] Meyn, S. P. and Tweedie, R. L. (1994). Markov Chains and Stochastic Stability. Springer, London. · Zbl 0812.60059 [26] Myklebust, T., Karlsen, H. A. and Tjøstheim, D. (2001). A Markov chain characterization of unit-root processes and the problem of nonlinear cointegration. Unpublished manuscript. · Zbl 1234.62122 [27] Nummelin, E. (1984). General Irreducible Markov Chains and Nonnegative Operators. Cambridge Univ. Press. · Zbl 0551.60066 [28] Phillips, P. C. B. and Park, J. (1998). Nonstationary density estimation and kernel autoregression. Cowles Foundation Discussion Paper 1181, Yale Univ. [29] Pollard, D. (1984). Convergence of Stochastic Processes. Springer, NewYork. · Zbl 0544.60045 [30] Robinson, P. M. (1983). Nonparametric estimators for time series. J.Time Ser.Anal.4 185-207. · Zbl 0544.62082 · doi:10.1111/j.1467-9892.1983.tb00368.x [31] Robinson, P. M. (1997). Large sample inference for nonparametric regression with dependent errors. Ann.Statist.25 2054-2083. · Zbl 0882.62039 · doi:10.1214/aos/1069362387 [32] Stock, J. H. (1994). Unit roots, structural breaks and trends. In Handbook of Econometrics (R. F. Engle and D. L. McFadden, eds.) 4 2740-2843. North-Holland, Amsterdam. Touati, P. A. (1990). Loi fonctionnelle du logarithme iteré pour les processus de Markov recurrents. Ann.Probab.18 140-159. [33] Tjøstheim, D. and Auestad, B. (1994). Nonparametric identification of nonlinear time series; projections and selecting significant lags. J.Amer.Statist.Assoc.89 1398-1419. · Zbl 0813.62036 · doi:10.2307/2291002 [34] Watson, M. W. (1994). Vector autoregression and cointegration. In Handbook of Econometrics (R. F. Engle and D. L. McFadden, eds.) 4 2843-2918. North-Holland, Amsterdam. [35] Wheeden, R. L. and Zygmund, A. (1977). Measure and Integral. Dekker, NewYork. · Zbl 0362.26004 [36] Xia, Y. (1998). Doctoral thesis, Univ. Hong Kong. [37] Yakowitz, S. (1993). Nearest neigbour regression estimation for null-recurrent Markov times series. Stochastic Process.Appl.48 311-318. · Zbl 0791.62084 · doi:10.1016/0304-4149(93)90050-E This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.