Global convergence of a modified Fletcher-Reeves conjugate gradient method with Armijo-type line search. (English) Zbl 1103.65074

Summary: In this paper, we are concerned with the conjugate gradient methods for solving unconstrained optimization problems. It is well-known that the direction generated by a conjugate gradient method may not be a descent direction of the objective function. In this paper, we take a little modification to the Fletcher-Reeves (FR) method such that the direction generated by the modified method provides a descent direction for the objective function. This property depends neither on the line search used, nor on the convexity of the objective function. Moreover, the modified method reduces to the standard FR method if line search is exact. Under mild conditions, we prove that the modified method with Armijo-type line search is globally convergent even if the objective function is nonconvex. We also present some numerical results to show the efficiency of the proposed method.


65K05 Numerical mathematical programming methods
90C30 Nonlinear programming
Full Text: DOI


[1] Al-Baali M. (1985) Descent property and global convergence of the Fletcher–Reeves method with inexact line search. IMA J. Numer. Anal. 5, 121–124 · Zbl 0578.65063
[2] Andrei, N.: Scaled conjugate gradient algorithms for unconstrained optimization. Comput. Optim. Appl. (to apper) · Zbl 1168.90608
[3] Birgin E., Martínez J.M. (2001) A spectral conjugate gradient method for unconstrained optimization. Appl. Math. Optim. 43, 117–128 · Zbl 0990.90134
[4] Bongartz K.E., Conn A.R., Gould N.I.M., Toint P.L. (1995) CUTE: constrained and unconstrained testing environments. ACM Trans. Math. Softw. 21, 123–160 · Zbl 0886.65058
[5] Dai Y.H., Yuan Y. (1996) Convergence properties of the conjugate descent method. Adv. Math. 25, 552–562 · Zbl 0871.49028
[6] Dai Y.H., Yuan Y. (1996) Convergence properties of the Fletcher–Reeves method. IMA J. Numer. Anal. 16, 155–164 · Zbl 0851.65049
[7] Dai Y.H., Yuan Y. (2000) A nonlinear conjugate gradient method with a strong global convergence property. SIAM J. Optim. 10, 177–182 · Zbl 0957.65061
[8] Dai, Y.H.: Some new properties of a nonlinear conjugate gradient method. Research report ICM-98-010, Insititute of Computational Mathematics and Scientific/Engineering Computing. Chinese Academy of Sciences, Beijing (1998) · Zbl 0914.90219
[9] Dixon L.C.W. (1970) Nonlinear optimization: a survey of the state of the art. In: Evans D.J. (eds) Software for Numerical Mathematics. Academic, New York, pp. 193–216
[10] Dolan E.D., Moré J.J. (2002) Benchmarking optimization software with performance profiles. Math. Program. 91, 201–213 · Zbl 1049.90004
[11] Fletcher R. (1987) Practical Methods of Optimization, Unconstrained Optimization. vol. I. Wiley, New York · Zbl 0905.65002
[12] Fletcher R., Reeves C. (1964) Function minimization by conjugate gradients. J. Comput. 7, 149–154 · Zbl 0132.11701
[13] Gilbert J.C., Nocedal J. (1992) Global convergence properties of conjugate gradient methods for optimization. SIAM. J. Optim. 2, 21–42 · Zbl 0767.90082
[14] Grippo L., Lucidi S. (1997) A globally convergent version of the Polak–Ribiére gradient method. Math. Program. 78, 375–391 · Zbl 0887.90157
[15] Hager W.W., Zhang H. (2005) A new conjugate gradient method with guaranteed descent and an efficient line search. SIAM J. Optim. 16, 170–192 · Zbl 1093.90085
[16] Hager W.W., Zhang H. (2006) A survey of nonlinear conjugate gradient methods. Pacific J. Optim. 2, 35–58 · Zbl 1117.90048
[17] Hestenes M.R., Stiefel E.L. (1952) Methods of conjugate gradients for solving linear systems. J. Res. Nat. Bur. Stand. Sect. B. 49, 409–432 · Zbl 0048.09901
[18] Hu Y., Storey C. (1991) Global convergence results for conjugate gradient methods. J. Optim. Theory Appl. 71, 399–405 · Zbl 0794.90063
[19] Liu D.C., Nocedal J. (1989) On the limited memory BFGS method for large scale optimization methods. Math. Program. 45, 503–528 · Zbl 0696.90048
[20] Liu G., Han J., Yin H. (1995) Global convergence of the Fletcher–Reeves algorithm with inexact line search. Appl. Math. J. Chin. Univ. Ser. B. 10, 75–82 · Zbl 0834.90122
[21] Moré J.J., Garbow B.S., Hillstrome K.E. (1981) Testing unconstrained optimization software. ACM Trans. Math. Softw. 7, 17–41 · Zbl 0454.65049
[22] Moré J.J., Thuente D.J. (1994) Line search algorithms with guaranteed sufficient decrease. ACM Trans. Math. Softw. 20, 286–307 · Zbl 0888.65072
[23] Nocedal J. (1996) Conjugate gradient methods and nonlinear optimization. In: Adams L., Nazareth J.L. (eds.) Linear and Nonlinear Conjugate Gradient-Related Methods. SIAM, Philadelphia, pp. 9–23 · Zbl 0866.65037
[24] Polak E. (1997) Optimization: Algorithms and Consistent Approximations. Springer, Berlin Heidelberg New York · Zbl 0899.90148
[25] Polak B., Ribiere G. (1969) Note surla convergence des méthodes de directions conjuguées. Rev. Francaise Imformat Recherche Opertionelle 16, 35–43
[26] Polyak B.T. (1969) The conjugate gradient method in extreme problems. USSR Comp. Math. Math. Phys. 9, 94–112 · Zbl 0229.49023
[27] Powell M.J.D. (1984) Nonconvex minimization calculations and the conjugate gradient method. In: Lecture Notes in Mathematics 1066, 121–141 · Zbl 0531.65035
[28] Powell M.J.D. (1986) Convergence properties of algorithms for nonlinear optimization. SIAM Rev. 28, 487–500 · Zbl 0624.90091
[29] Raydan M. (1997) The Barzilain and Borwein gradient method for the large unconstrained minimization problem. SIAM J. Optim. 7, 26–33 · Zbl 0898.90119
[30] Sun J., Zhang J. (2001) Convergence of conjugate gradient methods without line search. Ann. Oper. Res. 103, 161–173 · Zbl 1014.90071
[31] Touati-Ahmed D., Storey C. (1990) Efficient hybrid conjugate gradient techniques. J. Optim. Theory Appl. 64, 379–397 · Zbl 0687.90081
[32] Zhang, L., Zhou, W.J., Li, D.H.: A descent modified Polak–Ribière–Polyak conjugate gradient method and its global convergence. IMA J. Numer. Anal. (to appear) · Zbl 1106.65056
[33] Zoutendijk G. (1970) Nonlinear programming, computational methods. In: Abadie J. (eds) Integer and Nonlinear Programming. North-Holland, Amsterdam, pp. 37–86 · Zbl 0336.90057
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.