zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Fast fifth-order polynomial transforms for generating univariate and multivariate nonnormal distributions. (English) Zbl 1103.65302
Summary: A general procedure is derived for simulating univariate and multivariate nonnormal distributions using polynomial transformations of order five. The procedure allows for the additional control of the fifth and sixth moments. The ability to control higher moments increases the precision in the approximations of nonnormal distributions and lowers the skew and kurtosis boundary relative to the competing procedures considered. Tabled values of constants are provided for approximating various probability density functions. A numerical example is worked to demonstrate the multivariate procedure. The results of a Monte Carlo simulation are provided to demonstrate that the procedure generates specified population parameters and intercorrelations.

MSC:
65C10Random number generation (numerical analysis)
65C60Computational problems in statistics
65C05Monte Carlo methods
62E99Statistical distribution theory
Software:
Mathematica
WorldCat.org
Full Text: DOI
References:
[1] Blair, R. C.: Rangen. (1987)
[2] Bradley, D. R.; Fleisher, C. L.: Generating multivariate data from nonnormal distributions: mihal and barrett revisited. Behav. res. Meth. instrum. Comput. 26, 156-166 (1994)
[3] Burr, I. W.: Cumulative frequency functions. Ann. math. Statist. 13, 215-232 (1942) · Zbl 0060.29602
[4] Chiang, A. C.: Fundamental methods of mathematical economics. (1984)
[5] Devroye, L.: Nonuniform random variate generation. (1986) · Zbl 0593.65005
[6] Fleishman, A. I.: A method for simulating nonnormal distributions. Psychometrika 43, 521-532 (1978) · Zbl 0388.62023
[7] Habib, A. R.; Harwell, M. R.: An empirical study of the type I error rate and power of some selected normal theory and nonparametric tests of the independence of two sets of variables. Comm. statist. Simulation comput. 18, 793-826 (1989) · Zbl 0695.62121
[8] Harwell, M. R.; Serlin, R. C.: An experimental study of a proposed test of nonparametric analysis of covariance. Psychol. bull. 104, 268-281 (1988)
[9] Harwell, M. R.; Serlin, R. C.: A nonparametric test statistic for the general linear model. J. educational statist. 14, 351-371 (1989)
[10] Harwell, M. R.; Serlin, R. C.: An empirical study of five multivariate tests for the single-factor repeated measures model. Comm. statist. Simulation comput. 26, 605-618 (1997) · Zbl 0900.62288
[11] Headrick, T.C., Sawilowsky, S.S., 1999a. The best test for interaction in factorial ANOVA and ANCOVA. The University of Florida Statistics Symposium on Selected Topics in Nonparametric Methods, Gainesville, FL.
[12] Headrick, T. C.; Sawilowsky, S. S.: Simulating correlated multivariate nonnormal distributions: extending the fleishman power method. Psychometrika 64, 25-35 (1999) · Zbl 1291.62211
[13] Headrick, T. C.; Sawilowsky, S. S.: Properties of the rank transformation in factorial analysis of covariance. Comm. statist. Simulation comput. 29, 1059-1088 (2000) · Zbl 1008.62654
[14] Headrick, T. C.; Sawilowsky, S. S.: Weighted simplex procedures for determining boundary points and constants for the univariate and multivariate power methods. J. educational behav. Statist. 25, 417-436 (2000)
[15] Johnson, M. E.: Multivariate statistical simulation. (1987) · Zbl 0604.62056
[16] Johnson, N. L.: Systems of frequency curves generated by methods of translation. Biometrika 36, 149-176 (1949) · Zbl 0033.07204
[17] Kendall, M.; Stuart, A.: The advanced theory of statistics. (1977) · Zbl 0353.62013
[18] Micceri, T.: The unicorn, the normal curve, and other impropable creatures. Psychological bull. 105, 156-166 (1989)
[19] Olejnik, S. F.; Algina, J.: Parametric ANCOVA and the rank transform ANCOVA when the data are conditionally non-normal and heteroscedastic. J. educational statist. 9, 129-150 (1984)
[20] Olejnik, S. F.; Algina, J.: An analysis of statistical power for parametric ANCOVA and rank transform ANCOVA. Comm. statist. Theory methods 16, 1923-1949 (1987)
[21] Pearson, K.: On non-skew frequency surfaces. Biometrika 15, 231 (1923)
[22] Pearson, K.: On the moments of the hypergeometrical series. Biometrika 16, 157 (1924)
[23] Pearson, K.: On a certain double hypergeometrical series and its representation by continuous frequency surfaces. Biometrika 16, 172 (1924)
[24] Ramberg, J. S.; Schmeiser, B. W.: An approximate method for generating asymmetric random variables. Comm. ACM 17, 78-82 (1974) · Zbl 0273.65004
[25] Seamen, S.; Algina, J.; Olejnik, S. F.: Type I error probabilities and power of the rank and parametric ANCOVA procedures. J. educational statist. 10, 345-367 (1985)
[26] Shieh, Y.: The effects of distributional characteristics on multilevel modeling parameter estimates and type I error control of parameter tests under conditions of nonnormality. (2000)
[27] Tadikamalla, P. R.: On simulating nonnormal distributions. Psychometrika 45, 273-279 (1980) · Zbl 0463.65094
[28] Tadikamalla, P.R., Johnson, N.L., 1980. Systems of Frequency Curves Generated by Transformations of Logistic Variables, Mimeo Series No. 1126. Department of Statistics, University of North Carolina at Chapel Hill, Chapel Hill, NC.
[29] Vale, C. D.; Maurelli, V. A.: Simulating multivariate nonnormal distributions. Psychometrika 48, 465-471 (1983) · Zbl 0521.65003
[30] Wolfram, S.: The Mathematica book. (1999) · Zbl 0924.65002
[31] Whittaker, T. A.; Fouladi, R. T.; Williams, N. J.: Determining predictor importance in multiple regression under multicollinearity and nonnormality conditions. (2001)