zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Global attractors of two-dimensional micropolar fluid flows in some unbounded domains. (English) Zbl 1103.76008
Summary: This paper is concerned with the existence and regularity of global attractors of micropolar fluid flows in two-dimensional unbounded domains, in which the Poincaré inequality holds. Based on an asymptotic compactness argument, a $L^{2}$ global attractor is shown to exist if the stationary external vector field is in $H^{ - 1}$. Moreover, if the external vector field is in $L^{2}$, then the $L^{2}$ global attractor becomes an $H^{1}$ global attractor.

MSC:
76A05Non-Newtonian fluids
35Q35PDEs in connection with fluid mechanics
WorldCat.org
Full Text: DOI
References:
[1] J. Chen, Z.-M. Chen, B.-Q. Dong, Existence of H2-global attractors of two dimensional micropolar fluid flows, J. Math. Anal. Appl., in press.
[2] Eringen, A. C.: Theory of micropolar fluids. J. math. Mech. 16, 1-18 (1966) · Zbl 0145.21302
[3] Galdi, G. P.; Rionero, S.: A note on the existence and uniqueness of solutions of micropolar fluid equations. Int. J. Eng. sci. 14, 105-108 (1977) · Zbl 0351.76006
[4] Hale, J.: Asymptotic behavior of dissipative systems. (1988) · Zbl 0642.58013
[5] Ladyzhenskaya, O. A.: Attractors for semigroups and evolution equations. (1991) · Zbl 0755.47049
[6] łukaszewicz, G.: Micropolar fluids. Theory and applications, modeling and simulation in science, engineering and technology (1999) · Zbl 0923.76003
[7] łukaszewicz, G.: Long time behavior of 2D micropolar fluid flows. Math. comput. Model. 34, 1787-1802 (2001) · Zbl 1020.76003
[8] łukaszewicz, G.; Sadowski, W.: Uniform attractor for 2D magneto-micropolar fluid flow in some unbounded domains. Z. angew. Math. phys. 55, 247-257 (2004) · Zbl 1055.35026
[9] Ma, Q. F.; Wang, S. H.; Zhong, C. K.: Necessary and sufficient conditions for the existence of global attractor for semigroup and application. Indiana univ. Math. J. 51, 1542-1558 (2002)
[10] Padula, M.; Russo, R.: A uniqueness theorem for micropolar fluid motions in unbounded regions. Boll. un. Mat. ital. A (5) 13, 660-666 (1976) · Zbl 0355.76007
[11] Rojas-Medar, M. A.: Magneto-micropolar fluid motion: existence and uniqueness of strong solution. Math. nachr. 188, 301-319 (1997) · Zbl 0893.76006
[12] Rosa, R.: The global attractor for the 2D Navier -- Stokes flow on some unbounded domains. Nonlinear anal. 32, 71-85 (1998) · Zbl 0901.35070
[13] Temam, R.: Navier -- Stokes equations, theory and numerical analysis. (1977) · Zbl 0383.35057
[14] Temam, R.: Infinite dimensional dynamical systems in mechanics and physics. (1988) · Zbl 0662.35001