zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Real linear Kronecker product operations. (English) Zbl 1104.15021
The Kronecker product operations in the real linear matrix analytic setting are developed. More versatile operations are proposed that still possess benefits of the usual Kronecker product. Particular attention is paid to the square matrix case motivated by applications to preconditioning and solving systems of linear equations. A number of generically valid factorizations for the inverse are derived. In this connection, approximating an ${\mathbb R}$-linear operator with the arising Kronecker product structures is quite natural and four associated matrix nearness problems are presented. A respective orthogonal decomposition for real matrices with the arising Kronecker singular value decompositions is introduced. Examples of matrix equations leading to ${\mathbb R}$-linear operators with Kronecker product parts are given. Among many ways of solving these equations, a factorization of QZ-type is derived.

15A69Multilinear algebra, tensor products
65F10Iterative methods for linear systems
65F35Matrix norms, conditioning, scaling (numerical linear algebra)
15A23Factorization of matrices
Full Text: DOI
[1] Agler, J.; Helton, W.; Stankus, M.: Classification of hereditary matrices. Linear algebra appl. 274, 125-160 (1998) · Zbl 0939.47014
[2] Bai, Z.; Demmel, J.; Dongarra, J.; Ruhe, A.; Van Der Vorst, H.: Templates for the solution of algebraic eigenvalue problems: A practical guide. (2000) · Zbl 0965.65058
[3] Bevis, J. H.; Hall, F.; Hartwig, R.: The matrix equation AX‾-XB=C and its special cases. SIAM J. Matrix anal. Appl. 9, 348-359 (1988) · Zbl 0655.15013
[4] Bhatia, R.; Rosenthal, P.: How and why to solve the operator equation AX-XB=Y. Bull. London math. Soc. 29, 1-21 (1997) · Zbl 0909.47011
[5] Eirola, T.; Huhtanen, M.; Von Pfaler, J.: Solution methods for R-linear problems in cn. SIAM J. Matrix anal. Appl. 25, 804-828 (2004) · Zbl 1112.65025
[6] Ford, J.; Tyrtyshnikov, E.: Combining Kronecker product approximation with discrete wavelet transforms to solve dense, function-related linear systems. SIAM J. Sci. comput. 25, 961-981 (2003) · Zbl 1046.65020
[7] Gardiner, J.; Laub, A.; Amato, J.; Moler, C.: Solution of the Sylvester matrix equation AXBT+CXDT=E. ACM trans. Math. software 18, 223-231 (1992) · Zbl 0893.65026
[8] George, A.; Ikramov, Kh.; Matushkina, E.; Tang, W. -P.: On a QR-like algorithm for some structured eigenvalue problems. SIAM J. Matrix anal. Appl. 16, 1107-1126 (1995) · Zbl 0837.65035
[9] Golub, G. H.; Van Loan, C. F.: Matrix computations. (1996) · Zbl 0865.65009
[10] Harvey, F. R.: Spinors and calibrations. Perspectives in mathematics 9 (1990) · Zbl 0694.53002
[11] Hong, Y. P.; Horn, R. A.: A canonical form for matrices under consimilarity. Linear algebra appl. 102, 143-168 (1988) · Zbl 0657.15008
[12] Horn, R. A.; Johnson, C. R.: Topics in matrix analysis. (1991) · Zbl 0729.15001
[13] M. Huhtanen, O. Nevanlinna, The real linear resolvent and cosolvent operators, J. Operator Theory, in press. · Zbl 1164.47006
[14] M. Huhtanen, O. Nevanlinna, Approximating real linear operators, submitted for publication. · Zbl 1123.15005
[15] M. Huhtanen, O. Nevanlinna, Real linear matrix analysis, Banach Center Publications, in press. · Zbl 1117.15005
[16] Huhtanen, M.; Von Pfaler, J.: The real linear eigenvalue problem in cn. Linear algebra appl. 394, 169-199 (2005) · Zbl 1070.15006
[17] Mccullough, S. A.; Rodman, L.: Hereditary classes of operators and matrices. Amer. math. Monthly 104, 415-430 (1997) · Zbl 0909.47016
[18] Moler, C.; Stewart, G. W.: An algorithm for generalized matrix eigenvalue problems. SIAM J. Numer. anal. 10, 241-256 (1973) · Zbl 0253.65019
[19] Regalia, P.; Mitra, S.: Kronecker products, unitary matrices and signal processing applications. SIAM rev. 31, 586-613 (1989) · Zbl 0687.15010
[20] Seberry, J.; Zhang, X. -M.: Some orthogonal matrices constructed by strong Kronecker product multiplication. Australas. J. Combin. 7, 213-224 (1993) · Zbl 0779.05013
[21] Van Loan, C. F.: The ubiquitous Kronecker product. J. comput. Appl. math. 123, 85-100 (2000) · Zbl 0966.65039
[22] Van Loan, C. F.; Pitsianis, N.: Approximation with Kronecker products, linear algebra for large scale and real-time applications (Leuven, 1992). NATO adv. Sci. inst. Ser. E appl. Sci. 232 (1993) · Zbl 0813.65078
[23] Youla, D. C.: A normal form for a matrix under the unitary congruence group. Canad. J. Math. 13, 694-704 (1961) · Zbl 0103.25201