zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Diffusion of chemically reactive species in a porous medium over a stretching sheet. (English) Zbl 1104.35038
The authors study the flow and mass transfer of a chemically reactive species of a viscoelastic fluid over a stretching sheet, using the proper sign for the material constant arising in the Cauchy stress in an incompressible homogeneous fluid of second grade. By knowing the mathematical equivalence of the mass concentration boundary layer problem with the thermal boundary analogue, the results obtained for mass transfer characteristics can be carried directly to the heat transfer characteristics by replacing the Schmidt number with the Prandtl number. For the flow of a second-order fluid past a flat sheet coinciding with the plane $y = 0$, the governing equations can be simplified and as a result, the problem is reduced to solving the following boundary value problem $$ \align & u_{tt} + t^{\frac{1}{\theta} - 1}u_t = \frac{1}{\theta t^2}\beta u^n, \quad t \in (0,1) \\ & u(0) = 0,\quad u(1) = 1, \endalign $$ where $e^{-y} = t^{1/\theta}$. In general, the equation is degenerate for $t$ near zero. A refined analysis allows to overcome the singular nature of the resulting nonlinear boundary value problem. Using the Brouwer fixed point theorem, existence results are established. Moreover, the exact analytical solutions are obtained. The results obtained for the diffusion characteristics reveal many interesting behaviors that warrant further study of the effects of reaction rate on the transfer of chemically reactive species.

35Q35PDEs in connection with fluid mechanics
92C45Kinetics in biochemical problems
35C05Solutions of PDE in closed form
34B16Singular nonlinear boundary value problems for ODE
34B18Positive solutions of nonlinear boundary value problems for ODE
76A10Viscoelastic fluids
Full Text: DOI
[1] Adams, R. A.: Sobolev spaces. Pure appl. Math. 65 (1975)
[2] Griffith, R. M.: Velocity, temperature, and concentration distribution during fiber spinning. Ind. engrg. Chem. fundam. 3, 245 (1964)
[3] Erickson, L. E.; Fan, L. T.; Fox, V. G.: Heat and mass transfer on a moving continuous flat plate with suction or injections. Ind. engrg. Chem. fundam. 5, 19 (1966)
[4] Friedman, A.: Variational principles and free boundary value problems. (1982) · Zbl 0564.49002
[5] Gupta, P. S.; Gupta, A. S.: Heat and mass transfer on a stretching sheet with suction or blowing. Can. J. Chem. eng. 55, 744 (1977)
[6] Chin, D. T.: Mass transfer to a continuous moving sheet electrode. J. electrochem. Soc. 122, 643 (1975)
[7] Gorla, R. S.: Unsteady mass transfer in the boundary layer on a continuous moving sheet electrode. J. electrochem. Soc. 125, 865 (1978)
[8] Sakiadis, B. C.: Boundary layer behavior on continuous solid surfaces. Aiche J. 7, 26 (1961)
[9] Crane, L. J.: Flow past a stretching sheet. Z. angew. Math. phys. 21, 645 (1970) · Zbl 0187.24505
[10] Rajagopal, K. R.; Na, T. Y.; Gupta, A. S.: Flow of a second order fluid over a stretching sheet. Rheol. acta 23, 213 (1984)
[11] Abel, S.; Veena, P. H.; Rajagopal, K.; Paravin, V. K.: Non-Newtonian magnetohydrodynamic flow over a stretching surface with heat and mass transfer. Internat. J. Non-linear mech. 39, 1067 (2004)
[12] Mcleod, B.; Rajagopal, K. R.: On the uniqueness of the flow of a Navier -- Stokes fluid due to stretching boundary. Arch. ration. Mech. anal. 98, 385 (1987) · Zbl 0631.76021
[13] Troy, W. C.; Ii, E. A. Overman; Eremontrout, G. B.; Keener, J. P.: Uniqueness of flow of second order fluid past a stretching sheet. Quart. appl. Math. 44, 753 (1987)
[14] Andersson, H. I.; Hansen, O. R.; Holmedal, B.: Diffusion of a chemically reactive species from a stretching sheet. Internat. J. Heat mass transfer 37, 659 (1994) · Zbl 0900.76609
[15] Chambre, P. L.; Young, J. D.: On diffusion of a chemically reactive species in a laminar boundary layer flow. Phys. fluids 1, 48 (1958) · Zbl 0084.41802
[16] Siddappa, B.; Abel, S.: Non-Newtonian flow past a stretching plate. Z. angew. Math. phys. 36, 890 (1985) · Zbl 0591.76011
[17] Rivlin, R. S.; Ericksen, J. L.: Stress deformation relations for isotropic materials. J. ration. Mech. anal. 4, 323 (1955) · Zbl 0064.42004
[18] Dunn, J. E.; Rajagopal, K. R.: Fluids of differential type: critical review and thermodynamic analysis. Internat. J. Engrg. sci. 33, 689 (1995) · Zbl 0899.76062
[19] Dunn, J. E.; Fosdick, R. L.: Thermodynamics, stability and boundedness of fluids of complexity 2 and fluids of second grade. Arch. ration. Mech. anal. 56, 191 (1974) · Zbl 0324.76001
[20] Fosdick, R. L.; Rajagopal, K. R.: Thermodynamics and stability of fluids of third grade. Proc. roy. Soc. London A 339, 351 (1980) · Zbl 0441.76002
[21] Rajagopal, K. R.; Gupta, A. S.; Na, T. A.: A note on the faulkner -- Skan flows of a non-Newtonian fluid. Internat. J. Non-linear mech. 18, 313 (1983)
[22] Rao, B. N.: Flow of a fluid of second grade over a stretching sheet. Internat. J. Non-linear mech. 31, 547 (1996) · Zbl 0864.76005
[23] Vajravelu, K.; Rollins, D.: Heat transfer in a viscoelastic fluid over a stretching sheet. J. math. Anal. appl. 158, 241 (1991) · Zbl 0725.76019
[24] Prasad, K. V.; Abel, S.; Datti, P. S.: Diffusion of electrically reactive species of a non-Newtonian fluid immersed in a porous medium over a stretching sheet. Internat. J. Non-linear mech. 38, 651 (2003) · Zbl 1312.76005
[25] Vajravelu, K.; Roper, T.: Flow and heat transfer in a second grade fluid over a stretching sheet. Internat. J. Non-linear mech. 34, 1031 (1999) · Zbl 1006.76005
[26] Abramowitz, M.; Stegum, F.: Handbook of mathematical functions. (1965)
[27] Gilbarg, D.; Trudinger, N. S.: Elliptic partial differential equations of second order. Grundlehren math. Wiss. 224 (1983) · Zbl 0562.35001