×

Rank-one convex hulls in \(\mathbb R^{2\times 2}\). (English) Zbl 1104.49013

A rank-one convex hull \(K^{\text{rc}}\) of a set of matrices \(K\subset{\mathbb R}^{m\times n}\) is defined standardly as \(\{A\in{\mathbb R}^{m\times n};\;\forall f:{\mathbb R}^{m\times n}\to{\mathbb R}\) rank-one convex: \(f(A)\leq\sup f(K)\}\) where \(f\) rank-one convex means that \(t\mapsto f(A+tB):\mathbb R\to\mathbb R\) is convex whenever rank\(\,B=1\).
In the paper, for \(m=2=n\), it is shown that \(K^{\text{rc}}=K\) if \(K\) does not contain two matrices whose difference has the rank one and if \(K\) does not contain any quadruple of matrices forming a so-called (Tartar’s) \(T_4\) configuration (i.e. a special hierarchical family of matrices with no rank-one connections).
In particular, the paper shows that any compact \(K\subset\mathbb R^{2\times2}\), which does not contain two matrices whose difference has the rank equal to one and for which \(K^{\text{rc}}\neq K\), contains a \(T_4\) configuration. Furthermore, a simple numerical criterion for testing \(T_4\) configurations is given.

MSC:

49J45 Methods involving semicontinuity and convergence; relaxation
52A30 Variants of convex sets (star-shaped, (\(m, n\))-convex, etc.)
26B25 Convexity of real functions of several variables, generalizations
Full Text: DOI

References:

[1] Aumann, R.J., Hart, S.: Bi-convexity and bi-martingales. Israel J. Math. 54, 159-180 (1986) · Zbl 0607.52001 · doi:10.1007/BF02764940
[2] Ball, J.M.: Does rank-one convexity imply quasiconvexity? In: Metastability and incompletely posed problems (Minneapolis, Minn., 1985), vol. 3 of IMA Vol. Math. Appl., pp. 17-32. Springer, New York 1987
[3] Casadio Tarabusi, E.: An algebraic characterization of quasi-convex functions. Ricerche Mat. 42, 11-24 (1993) · Zbl 0883.26011
[4] Danzer, L., Grünbaum, B., Klee, V.: Helly’s theorem and its relatives. In: Proc. Sympos. Pure Math., Vol. VII, pp. 101-180. Amer. Math. Soc., Providence, R.I. 1963 · Zbl 0132.17401
[5] Kirchheim, B.: Rigidity and Geometry of microstructures. Habilitation thesis, University of Leipzig (2003) · Zbl 1140.74303
[6] Kirchheim, B., Müller, S., Šverák, V.: Studying nonlinear PDE by geometry in matrix space. In: Hildebrandt, S., Karcher, H. (eds.) Gemetric analysis and Nonlinear partial differential equations, pp. 347-395. Springer, Berlin Heidelberg New York 2003 · Zbl 1290.35097
[7] Kolář, J.: Non-compact lamination convex hulls. Ann. Inst. H. Poincaré Anal. Non Linéaire 20(3), 391-403 (2003) · Zbl 1038.26008 · doi:10.1016/S0294-1449(02)00007-0
[8] Matoušek, J.: On directional convexity. Discrete Comput. Geom. 25, 389-403 (2001) · Zbl 0989.52007 · doi:10.1007/s004540010069
[9] Matoušek, J., Plecháč, P.: On functional separately convex hulls. Discrete Comput. Geom. 19, 105-130 (1998) · Zbl 0892.68102 · doi:10.1007/PL00009331
[10] Morrey, C.B. Jr.: Quasi-convexity and the lower semicontinuity of multiple integrals. Pacific J. Math. 2, 25-53 (1952) · Zbl 0046.10803
[11] Müller, S.: Rank-one convexity implies quasiconvexity on diagonal matrices. Internat. Math. Res. Notices 20, 1087-1095 (1999) · Zbl 1055.49506 · doi:10.1155/S1073792899000598
[12] Müller, S.: Variational models for microstructure and phase transitions. In: Calculus of variations and geometric evolution problems (Cetraro, 1996), vol. 1713. Lecture Notes in Math., pp. 85-210, Springer, Berlin 1999
[13] Nesi, V., Milton, G.W.: Polycrystalline configurations that maximize electrical resistivity. J. Mech. Phys. Solids 39, 525-542 (1991) · Zbl 0734.73068 · doi:10.1016/0022-5096(91)90039-Q
[14] Pedregal, P.: Laminates and microstructure. European J. Appl. Math. 4, 121-149 (1993) · Zbl 0779.73050 · doi:10.1017/S0956792500001030
[15] Scheffer, V.: Regularity and irregularity of solutions to nonlinear second order elliptic systems and inequalities. Dissertation, Princeton University (1974)
[16] Šverák, V.: Rank-one convexity does not imply quasiconvexity. Proc. Roy. Soc. Edinburgh Sect. A 120(1-2), 185-189 (1992) · Zbl 0777.49015
[17] Šverák, V.: On Tartar’s conjecture. Ann. Inst. H. Poincaré Anal. Non Linéaire 10, 405-412 (1993)
[18] Tartar, L.: Some remarks on separately convex functions. In: Microstructure and phase transition, IMA Vol. Math. Appl., vol. 54, pp. 191-204. Springer, New York 1993 · Zbl 0823.26008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.