×

Hamiltonian perspective on generalized complex structure. (English) Zbl 1104.53077

Author’s summary: In this note we clarify the relation between extended world-sheet super-symmetry and generalized complex structure. The analysis is based on the phase space description of a wide class of sigma models. We point out the natural isomorphism between the group of orthogonal automorphisms of the Courant bracket and the group of local canonical transformations of the cotangent bundle of the loop space. Indeed this fact explains the natural relation between the world-sheet and the geometry of \(T \oplus T^*\). We discuss D-branes in this perspective.

MSC:

53C80 Applications of global differential geometry to the sciences
53C26 Hyper-Kähler and quaternionic Kähler geometry, “special” geometry
81T60 Supersymmetric field theories in quantum mechanics

References:

[1] Alekseev, JHEP, 0503, 035 (2005) · doi:10.1088/1126-6708/2005/03/035
[2] Cattaneo, Commun. Math. Phys., 212, 591 (2000) · Zbl 1038.53088 · doi:10.1007/s002200000229
[3] Cattaneo, Lett. Math. Phys., 69, 157 (2004) · Zbl 1065.53063 · doi:10.1007/s11005-004-0609-7
[4] Gualtieri, M.: Generalized complex geometry. Oxford University DPhil thesis, http://arxiv.org/list/math.DG/0401221, 2004 · Zbl 1235.32020
[5] Hitchin, N.: Generalized Calabi-Yau manifolds. Q. J. Math. 54, no. 3, 281-308, (2003) · Zbl 1076.32019
[6] Hull, Nucl. Phys. B, 509, 252 (1998) · Zbl 0933.81028 · doi:10.1016/S0550-3213(97)00492-6
[7] Kapustin, Commun. Math. Phys., 233, 79 (2003) · Zbl 1051.17017 · doi:10.1007/s00220-002-0755-7
[8] Kapustin, Int. J. Geom. Meth. Mod. Phys., 1, 49 (2004) · Zbl 1065.81108 · doi:10.1142/S0219887804000034
[9] Kapustin, A., Li, Y.: Topological sigma-models with H-flux and twisted generalized complex. http://arxiv.org/list/hep-th/0407249, 2004 · Zbl 1192.81310
[10] Lindström, JHEP, 0302, 006 (2003) · doi:10.1088/1126-6708/2003/02/006
[11] Lindström, Phys. Lett. B, 587, 216 (2004) · Zbl 1246.81375 · doi:10.1016/j.physletb.2004.03.014
[12] Lindström, Commun. Math. Phys., 257, 235 (2005) · Zbl 1118.53048 · doi:10.1007/s00220-004-1265-6
[13] Zabzine, Lett. Math. Phys., 70, 211 (2004) · Zbl 1070.81523 · doi:10.1007/s11005-004-4296-1
[14] Zucchini, JHEP, 0411, 045 (2004) · doi:10.1088/1126-6708/2004/11/045
[15] Zucchini, JHEP, 0503, 022 (2005) · doi:10.1088/1126-6708/2005/03/022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.