×

Spatial extremes: models for the stationary case. (English) Zbl 1104.60021

Let \(\varphi\) be a unimodal continuous probability density on \(\mathbb{R}\), let \(N(\cdot)=\sum_{j\geq 1}\varepsilon_{(X_j,Y_j)}(\cdot)\) be a homogeneous Poisson process on \(\mathbb{R}\times[0,\infty)\) and put \(Z(t):=\max_{j\geq 1}\varphi(X_j-t)/Y_j\), \(t\in\mathbb{R}\). Then \(Z\) is a simple max stable process, i.e., the distribution of the process \(Z\) coincides for any \(k\in\mathbb{N}\) with that of \(k^{-1}\max_{i\leq k}Z_i\), where \(Z_1,Z_2,\dots\) are independent copies of \(Z\). In particular we have for arbitrary \(t_1,\dots,t_d\in\mathbb{R}\) and \(x_1,\dots,x_d>0\) with \(d\in\mathbb{N}\) \[ P(Z(t_1)\leq x_1,\dots,Z(t_d)\leq x_d)=\exp\left(-\int_{\infty}^{\infty} \max_{i\leq d}\frac{\varphi(s-t_i)}{x_i}\,ds\right) \] and, thus, \(P(Z(t)\leq x)=\exp(-1/x)\), \(x>0\), \(t\in\mathbb{R}\). The first part of this paper focuses on the computation of the bivariate marginal distribution function \[ P(Z(t_1)\leq x_1,Z(t_2)\leq x_2)=\exp\left(-\int_{\infty}^{\infty} \max_{i=1,2}\frac{\varphi_{\beta}(s-t_i)}{x_i}\,ds\right), \] where \(\varphi_{\beta}(s)=\beta\varphi(\beta s)\) with a scale parameter \(\beta>0\), and \(\varphi\) is the standard normal, the double exponential and the \(t\)-density. The second part of this paper focuses on estimation of \(\beta\) based on \(n\) independent copies \(X_1,\dots,X_n\) of a stochastic process \(X\), which is in the domain of attraction of \(Z\), i.e., there are sequences of continuous functions \(a_n>0\), \(b_n\) on \(\mathbb{R}\) such that as \(n\to\infty\) \[ \left(\frac{\max_{i\leq n}X_i(t)-b_n(t)}{a_n(t)}\right)_{t\in\mathbb{R}} \to_{D}(Z(t))_{t\in\mathbb{R}} \] in \(C\)-space. Denote by \(F_t\) the distribution function of \(X(t)\). Estimation of \(\beta\) is based on the observation that \[ \frac{1}{u}P\left(\left(1-F_{t_i}(X(t_i))\right)\leq u,\, i\leq d \right)\to_{u\downarrow 0}=2\int_{\beta(\max_{i\leq d}t_i-\min_{i\leq d}t_i)/2}^{\infty}\varphi(s)\,ds. \] Consistency of the corresponding estimators is proved, and asymptotic normality is established under suitable conditions. The preceding considerations are extended to a homogeneous Poisson process \(\sum_{j\geq 1}\varepsilon_{(X_j,W_j,Y_j)}\) on \(\mathbb{R}^2\times[0,\infty)\) with \(Z(t_1,t_2):=\max_{j\geq 1} \varphi(X_j-t_1,W_j-t_2)/Y_j\) for \((t_1,t_2)\in\mathbb{R}^2\).

MSC:

60G70 Extreme value theory; extremal stochastic processes
62E20 Asymptotic distribution theory in statistics
60G10 Stationary stochastic processes
62M40 Random fields; image analysis
62H11 Directional data; spatial statistics
62G32 Statistics of extreme values; tail inference

References:

[1] Balkema, A. A. and de Haan, L. (1988). Almost sure continuity of stable moving average processes with index less than one. Ann. Probab. 16 333–343. JSTOR: · Zbl 0634.60037 · doi:10.1214/aop/1176991905
[2] Brown, B. M. and Resnick, S. I. (1977). Extreme values of independent stochastic processes. J. Appl. Probab. 14 732–739. · Zbl 0384.60055 · doi:10.2307/3213346
[3] Coles, S. G. (1993). Regional modelling of extreme storms via max-stable processes. J. Roy. Statist. Soc. Ser. B 55 797–816. · Zbl 0781.60041
[4] de Haan, L. and Lin, T. (2001). On convergence toward an extreme value distribution in \(C[0,1]\). Ann. Probab. 29 467–483. · Zbl 1010.62016 · doi:10.1214/aop/1008956340
[5] de Haan, L. and Pickands, J., III (1986). Stationary min-stable stochastic processes. Probab. Theory Related Fields 72 477–492. · Zbl 0577.60034 · doi:10.1007/BF00344716
[6] de Haan, L. and Resnick, S. I. (1977). Limit theory for multivariate sample extremes. Z. Wahrsch. Verw. Gebiete 40 317–337. · Zbl 0375.60031 · doi:10.1007/BF00533086
[7] Eddy, W. F. (1980). The distribution of the convex hull of a Gaussian sample. J. Appl. Probab. 17 686–695. · Zbl 0435.60046 · doi:10.2307/3212962
[8] Falk, M., Hüsler, J. and Reiss, R.-D. (1994). Laws of Small Numbers : Extremes and Rare Events . Birkhäuser, Basel. · Zbl 0817.60057
[9] Huang, X. (1992). Statistics of bivariate extreme values. Ph.D. dissertation, Tinbergen Institute.
[10] Hüsler, J. and Reiss, R.-D. (1989). Maxima of normal random vectors: Between independence and complete dependence. Statist. Probab. Lett. 7 283–286. · Zbl 0679.62038 · doi:10.1016/0167-7152(89)90106-5
[11] Pickands, J., III (1981). Multivariate extreme value distributions (with discussion). Bull. Inst. Internat. Statist. 49 859–878, 894–902. · Zbl 0518.62045
[12] Schlather, M. (2002). Models for stationary max-stable random fields. Extremes 5 33–44. · Zbl 1035.60054 · doi:10.1023/A:1020977924878
[13] Sibuya, M. (1960). Bivariate extreme statistics. I. Ann. Inst. Statist. Math. 11 195–210. · Zbl 0095.33703 · doi:10.1007/BF01682329
[14] Smith, R. (1990). Max-stable processes and spatial extremes. Unpublished manuscript.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.