zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Uniqueness and order in sequential effect algebras. (English) Zbl 1104.81018
Summary: A sequential effect algebra (SEA) is an effect algebra on which a sequential product is defined. We present examples of effect algebras that admit a unique, many and no sequential product. Some general theorems concerning unique sequential products are proved. We discuss sequentially ordered SEAs in which the order is completely determined by the sequential product. It is demonstrated that intervals in a sequential ordered SEA admit a sequential product.

81P10Logical foundations of quantum mechanics; quantum logic
03G12Quantum logic
06C10Semimodular lattices, geometric lattices
06C15Complemented lattices, etc.
Full Text: DOI
[1] Bennett, M. K. and Foulis, D. J. (1997). Interval and scale effect algebras. Advances in Applied Mathematics 91, 200--215. · Zbl 0883.03048 · doi:10.1006/aama.1997.0535
[2] Busch, P., Lahti, P. J., and Middlestaedt, P. (1991). The Quantum Theory of Measurements, Springer-Verlag, Berlin.
[3] Busch, P. and Singh, J. (1998). Lüders theorem for unsharp effects. Physics Letters A 249, 10--24. · doi:10.1016/S0375-9601(98)00704-X
[4] Davies, E. B. (1976). Quantum Theory of Open Systems, Academic Press, New York. · Zbl 0388.46044
[5] Douglas, R. G. (1966). On majorization, factorization, and range inclusion of operators on Hilbert space. Proceedings of American Mathematical Society 17, 413--415. · Zbl 0146.12503
[6] Dvurečenskij, A. and Pulmannová, S. (2000). New Trends in Quantum Structures, Kluwer, Dordrecht. · Zbl 0987.81005
[7] Foulis, D. J. and Bennett, M. K. (1994). Effect algebras and unsharp quantum logics. Foundation of Physics 24, 1325--1346. · Zbl 1213.06004 · doi:10.1007/BF02283036
[8] Giuntini, R. and Greuling, H. (1989). Toward a formal language for unsharp properties. Foundation Physics 19, 931--945. · doi:10.1007/BF01889307
[9] Gudder, S. (1998a). Sharply dominating effect algebras. Tatra Mountain Mathematical Publication 15, 23--30. · Zbl 0939.03073
[10] Gudder, S. (1998b). A histories approach to quantum mechanics. Journal of Mathematical Physics 39, 5772--5788. · Zbl 0935.81005 · doi:10.1063/1.532592
[11] Gudder, S. and Nagy, G. (2001a). Sequentially independent effects. Proceedings of American Mathematical Soceity 130, 1125--1130. · Zbl 1016.47020
[12] Gudder, S. and Nagy, G. (2001b). Sequential quantum measurements. Journal of Mathematical Physics 42, 5212--5222. · Zbl 1018.81005 · doi:10.1063/1.1407837
[13] Gudder, S. and Greechie, R. (2002). Sequential products on effect algebras. Reports on Mathematical Physics 49, 87--111. · Zbl 1023.81001 · doi:10.1016/S0034-4877(02)80007-6
[14] Kôpka, F. and Chovanec, F. (1994). D-Posets. Mathematical Slovaca 44, 21--34. · Zbl 0789.03048
[15] Kraus, K. (1983). States, Effects, and Operations, Springer-Verlag, Berlin. · Zbl 0545.46049
[16] Ludwig, G. (1983). Foundations of Quantum Mechanics, Springer-Verlag, Berlin. · Zbl 0509.46057