×

Geometric cardinal invariants, maximal functions and a measure theoretic pigeonhole principle. (English) Zbl 1105.03049

Summary: It is shown to be consistent with set theory that every set of reals of size \(\aleph_1\) is null yet there are \(\aleph_1\) planes in Euclidean 3-space whose union is not null. Similar results will be obtained for other geometric objects. The proof relies on results from harmonic analysis about the boundedness of certain harmonic functions and a measure-theoretic pigeonhole principle.

MSC:

03E35 Consistency and independence results
03E05 Other combinatorial set theory
03E17 Cardinal characteristics of the continuum
28A25 Integration with respect to measures and other set functions
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Survey of the Steinhaus tiling problem 9 pp 335– (2003)
[2] DOI: 10.1007/BF02801467 · Zbl 0742.52002 · doi:10.1007/BF02801467
[3] DOI: 10.1090/S0894-0347-02-00400-9 · Zbl 1021.03040 · doi:10.1090/S0894-0347-02-00400-9
[4] DOI: 10.1090/S0002-9939-02-06437-7 · Zbl 0993.03058 · doi:10.1090/S0002-9939-02-06437-7
[5] DOI: 10.1007/BF02785863 · Zbl 1021.52001 · doi:10.1007/BF02785863
[6] DOI: 10.1017/S0305004100056681 · Zbl 0438.42014 · doi:10.1017/S0305004100056681
[7] Proceedings of the American Mathematical Society 92 pp 432– (1984) · doi:10.1090/S0002-9939-1984-0759669-5
[8] DOI: 10.1007/BF02792533 · Zbl 0626.42012 · doi:10.1007/BF02792533
[9] Bulletin des Sciences Mathématiques, (2) 104 pp 225– (1980)
[10] DOI: 10.2307/2586494 · Zbl 0929.03051 · doi:10.2307/2586494
[11] DOI: 10.1090/S0002-9947-99-02197-2 · Zbl 0916.03033 · doi:10.1090/S0002-9947-99-02197-2
[12] DOI: 10.1073/pnas.73.7.2174 · Zbl 0332.42018 · doi:10.1073/pnas.73.7.2174
[13] DOI: 10.1090/S0002-9904-1974-13343-4 · Zbl 0284.16012 · doi:10.1090/S0002-9904-1974-13343-4
[14] DOI: 10.1090/S0002-9947-1970-0265411-1 · doi:10.1090/S0002-9947-1970-0265411-1
[15] DOI: 10.1090/S0002-9947-1968-0224606-4 · doi:10.1090/S0002-9947-1968-0224606-4
[16] DOI: 10.1112/S0025579300009748 · Zbl 0413.28008 · doi:10.1112/S0025579300009748
[17] DOI: 10.1007/BF02802497 · Zbl 0987.52001 · doi:10.1007/BF02802497
[18] Fundamenta Mathematicae 164 pp 143– (2000) · Zbl 0958.68177
[19] DOI: 10.1073/pnas.222551699 · Zbl 1064.11047 · doi:10.1073/pnas.222551699
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.