×

zbMATH — the first resource for mathematics

Multiple zeta values and periods of moduli spaces \(\bar {\mathfrak M}_{0,n}\). (Périodes des espaces des modules \(\bar {\mathfrak M}_{0,n}\) et valeurs zêtas multiples.) (French) Zbl 1105.11019
Let \({\mathfrak M}_{0,n}\) denote the moduli space of genus 0 curves with \(n\) marked points. Let \(\overline{\mathfrak M}_{0,n}\) denote the smooth compactification of \({\mathfrak M}_{0,n}\) constructed by Deligne, Knudsen and Mumford. Fix two boundary divisors \(A\) and \(B\) (i.e., \(A,B \subset \overline{{\mathfrak M}}_{0,n}\setminus {\mathfrak M}_{0,n}\)) that have no irreducible component in common. A. B. Goncharov and Yu. I. Manin [Compos. Math. 140, No. 1, 1–14 (2004; Zbl 1047.11063)] showed that \(H^\ell(\overline{{\mathfrak M}}_{0,n}\setminus A, B\setminus B\cup A)\) is a mixed Tate motive unramified over \(\mathbb Z\). Fix positive integers \(n_1,\dots, n_r\) such that \(n_r>1\). Then \[ \zeta(n_1,\dots,n_r):=\sum_{0< k_1<\dots<k_r} \frac{1}{k_1^{n_1}\dots k_r^{n_r}} \] is called a multiple zeta value. Its weight is the quantity \(n_1+\dots+n_r\). A very general conjecture claims that the periods associated with mixed Tate motives unramified over \(\mathbb Z\) are multiple zeta values.
The paper under review sketches a proof for this conjecture for the mixed Tate motives
\(H^\ell(\overline{{\mathfrak M}}_{0,n}\setminus A, B\setminus B\cup A)\). The proof is highly topological. It uses that \(M_{0,n}(\mathbb R)\) can be tessellated by a number of open cells \(X_n\) which can be identified with a Stasheff polytope. Using a version of Stokes’ Theorem and induction the author relates the periods with multiple polylogarithms evaluated at 1, yielding that the periods are \(\mathbb Q[2\pi i]\)-linear combinations of multiple zeta values of weight at most \(\ell\).

MSC:
11M32 Multiple Dirichlet series and zeta functions and multizeta values
11G55 Polylogarithms and relations with \(K\)-theory
14H10 Families, moduli of curves (algebraic)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] F.C.S. Brown, Périodes des espaces des modules \(\mathfrak{M}_{0, n}\) et valeurs zêta multiples, thèse de Doctorat, Univ. de Bordeaux 1, 2006
[2] Brown, F.C.S., Polylogarithmes multiples uniformes en une variable, C. R. acad. sci. Paris, ser. I, 338, 527-532, (2004) · Zbl 1048.11053
[3] Chen, K.T., Extension of \(C^\infty\) function algebra by integrals and malcev completion of \(\pi_1^\ast\), Adv. in math. (2), 23, 181-210, (1977) · Zbl 0345.58003
[4] Deligne, P.; Mumford, D., The irreducibility of the space of curves of a given genus, Publ. math. IHES, 36, 75-109, (1969) · Zbl 0181.48803
[5] Drinfeld, V.G., On quasitriangular quasi-Hopf algebras and on a group that is closely connected with \(\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})\), Leningrad math. J., 2, 4, 829-860, (1991) · Zbl 0728.16021
[6] S. Fischler, Irrationalité de valeurs de zêta [d’après Apéry, Rivoal,...], Séminaire Bourbaki 2002-2003, Exposé 910, 2002
[7] A.B. Goncharov, Multiple polylogarithms and mixed Tate motives, preprint, 2001; arXiv: math.AG/0103059
[8] Goncharov, A.B.; Manin, Y.I., Multiple ζ-motives and moduli spaces M‾0,n, Compositio math., 140, 1-14, (2004) · Zbl 1047.11063
[9] Hain, R.M., Classical polylogarithms, part 2, Proc. sympos. pure math., 55, (1994)
[10] Kapranov, M.M., The permutoasssociahedron, Maclane’s coherence theorem and asymptotic zones for the KZ equation, J. pure appl. algebra, 85, 119-142, (1993) · Zbl 0812.18003
[11] Knizhnik, V.G.; Zamolodchikov, A.B., Current algebras and wess – zumino models in two dimensions, Nucl. phys. B, 247, 83-103, (1984) · Zbl 0661.17020
[12] S.A. Zlobin, Properties of coefficients of certain linear forms in generalized polylogarithms, preprint, 2005; arXiv: math.NT/0511245
[13] Terasoma, T., Selberg integrals and multiple zeta values, Compos. math, 133, 1, 1-24, (2002) · Zbl 1003.11042
[14] Waldschmidt, M., Valeurs zêtas multiples : une introduction, J. théorie des nombres de Bordeaux, 12, 581-595, (2002) · Zbl 0976.11037
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.