zbMATH — the first resource for mathematics

Associated primes and cofiniteness of local cohomology modules. (English) Zbl 1105.13016
Let \(\mathfrak{a}\) be an ideal of a noetherian ring \(R\). Given an \(R\)-module \(M\), write \(H^i_{\mathfrak a}(M)\) for the \(i\)th local cohomology module of \(M\).
The authors generalize M. P. Brodmann and A. Lashgari Faghani’s result [Proc. Am. Math. Soc. 128, 2851–2853 (2000; Zbl 0955.13007)] by showing that the \(R\)-module \(\text{Hom}_R(R/\mathfrak{a},H^s_{\mathfrak a}(M))\) is finitely generated provided \(s\) is the first integer such that \(H^s_{\mathfrak a}(M)\) is non-\(\mathfrak{a}\)-cofinite. Then, for a local noetherian ring \((R,\mathfrak{m})\), the last integer \(n\) such that \(H^n_{\mathfrak a}(M)\) is not \(\mathfrak{m}\)-cofinite is studied.

13D45 Local cohomology and commutative rings
13D25 Complexes (MSC2000)
13D05 Homological dimension and commutative rings
Full Text: DOI arXiv
[1] Asadollahi, J., Khashyarmanesh, K., Salarian, Sh.: A generalization of the cofiniteness problem in local cohomology modules. J. Aust. Math. Soc. 75, 313–324 (2003) · Zbl 1096.13522
[2] Bruns, W., Herzog, J.: Cohen-Macaulay rings. Cambridge Studies in Advanced Mathematics 39. Cambridge University Press, Cambridge, 1993 · Zbl 0788.13005
[3] Brodmann, M.P., Lashgari Faghani, A.: A finiteness result for associated primes of local cohomology modules. Proc. Am. Math. Soc. 128, 2851–2853 (2000) · Zbl 0955.13007
[4] Brodmann, M.P., Rotthaus, Ch., Sharp, R.Y.: On annihilators and associated primes of local cohomology modules. J. Pure Appl. Algebra 153, 197–227 (2000) · Zbl 0968.13010
[5] Delfino, D., Marley, T.: Cofinite modules and local cohomology. J. Pure Appl. Algebra 121 (1), 45–52 (1997) · Zbl 0893.13005
[6] Divaani-Aazar, K., Mafi, A.: Associated primes of local cohomology modules. Proc. Am. Math. Soc. to appear · Zbl 1103.13010
[7] Grothendieck, A.: Cohomologie locale des faisceaux cohérents et théorémes de Lefschetz locaux et globaux. (SGA 2) Advanced Studies in Pure Mathematics, Vol. 2. North-Holland Publishing Co., Amsterdam; Masson & Cie, Editeur, Paris, 1968
[8] Hartshorne, R.: Cohomological dimension of algebraic varieties. Ann. Math. 88, 403–450 (1968) · Zbl 0169.23302
[9] Hartshorne, R.: Affine duality and cofiniteness. Invent. Math. 9, 145–164 (1970) · Zbl 0196.24301
[10] Huneke, C., Lyubeznik, G.: On the vanishing of local cohomology modules. Invent. Math. 102, 73–93 (1990) · Zbl 0717.13011
[11] Huneke, C., Sharp, R.: Bass numbers of local cohomology modules. Trans. Am. Math. Soc. 339, 765–779 (1993) · Zbl 0785.13005
[12] Huneke, C.: Problems on local cohomology. Free resolutions in commutative algebra and algebraic geometry (Sundance, UT, 1990), Res. Notes Math., 2, Jones and Bartlett, Boston, MA, pp. 93–108, 1992
[13] Katzman, M.: An example of an infinite set of associated primes of a local cohomology module. J. Algebra 252, 161–166 (2002) · Zbl 1083.13505
[14] Khashyarmanesh, K., Salarian, Sh.: On the associated primes of local cohomology modules. Commun. Algebra 27, 6191–6198 (1999) · Zbl 0940.13013
[15] Lyubeznik, G.: Finiteness properties of local cohomology modules (an application of D-modules to commutative algebra). Invent. Math. 113, 41–55 (1993) · Zbl 0795.13004
[16] Melkersson, L.: On asymptotic stability for sets of prime ideals connected with the powers of an ideal. Math. Proc. Camb. Phil. Soc. 107, 267–271 (1990) · Zbl 0709.13002
[17] Melkersson, L.: Modules cofinite with respect to an ideal. Preprint, Linköpings University, 2003
[18] Melkersson, L.: Problems and results on cofiniteness: a survey. IPM Proceedings Series No. II, IPM 2004
[19] Singh, A. K.: p-torsion elements in local cohomology modules. Math. Res. Lett. 7, 165–176 (2000) · Zbl 0965.13013
[20] Vasconcelos, W.: Divisor theory in module categories. North-Holland, Amsterdam, 1974 · Zbl 0296.13005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.