[1] |
T. Ando, Topics on Operator Inequalities, Lecture Notes Hokkaido Univ., Sapporo, 1978. |

[2] |
Ando, T.: Concavity of certain maps on positive definite matrices and applications to Hadamard products. Linear algebra appl. 26, 203-241 (1979) · Zbl 0495.15018 |

[3] |
Ando, T.: On the arithmetic-geometric-harmonic-mean inequalities for positive definite matrices. Linear algebra appl. 52-53, 31-37 (1983) |

[4] |
Ando, T.: Majorizations and inequalities in matrix theory. Linear algebra appl. 199, 17-67 (1994) · Zbl 0798.15024 |

[5] |
Ando, T.; Li, C. -H.; Mathias, R.: Geometric means. Linear algebra appl. 385, 305-334 (2004) · Zbl 1063.47013 |

[6] |
S.N. Armstrong, C.R. Hillar, A degree theoretic approach to the solvability of symmetric word equations in positive definite letters, preprint. · Zbl 1134.15009 |

[7] |
Bhatia, R.: On the exponential metric increasing property. Linear algebra appl. 375, 211-220 (2003) · Zbl 1052.15013 |

[8] |
Fujii, M.; Furuta, T.; Nakamoto, R.: Norm inequalities in the corach-recht theory and operator means. Illinois J. Math. 40, 527-534 (1996) · Zbl 0927.47012 |

[9] |
Hauser, R.; Lim, Y.: Self-scaled barriers for irreducible symmetric cones. SIAM J. Optim. 12, 715-723 (2002) · Zbl 1008.90046 |

[10] |
Hillar, C. J.; Johnson, C. R.: Eigenvalues of words in two positive definite letters. SIAM J. Matrix anal. Appl. 23, 916-928 (2003) · Zbl 1007.68139 |

[11] |
Hillar, C. J.; Johnson, C. R.: Symmetric word equations in two positive definite letters. Proc. amer. Math. soc. 132, 945-953 (2004) · Zbl 1038.15005 |

[12] |
Lang, S.: Fundamentals of differential geometry. Graduate text in mathematics (1999) · Zbl 0932.53001 |

[13] |
Lawson, J. D.; Lim, Y.: The geometric mean, matrices, metrics, and more. Amer. math. Monthly 108, 797-812 (2001) · Zbl 1040.15016 |

[14] |
J.D. Lawson, Y. Lim, Symmetric spaces with convex metric, Forum Math., in press. · Zbl 1169.53333 |

[15] |
Lim, Y.: Geometric means on symmetric cones. Arch. math. 75, 39-45 (2000) · Zbl 0963.15022 |

[16] |
Lim, Y.: Applications of geometric means on symmetric cones. Math. ann. 319, 457-468 (2001) · Zbl 1030.17030 |

[17] |
Lim, Y.: Best approximation in Riemannian geodesic submanifolds of positive definite matrices. Canad. J. Math. 56, 776-793 (2004) · Zbl 1067.15020 |

[18] |
Maass, H.: Siegelâ€™s modular forms and Dirichlet series. Lecture notes in mathematics 216 (1971) · Zbl 0224.10028 |

[19] |
Neeb, K. -H.: Compressions of infinite-dimensional bounded symmetric domains. Semigroup forum 61, 71-105 (2001) · Zbl 0980.22005 |

[20] |
Nesterov, Yu.E.; Todd, M. J.: Self-scaled barriers and interior-point methods for convex programming. Math. oper. Res. 22, 1-42 (1997) · Zbl 0871.90064 |