zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
New approach to synchronization analysis of linearly coupled ordinary differential systems. (English) Zbl 1105.34031
The authors consider the following linearly coupled system of ordinary differential equations $$ \frac{dx_i(t)}{dt} = f(x_i(t),t)+\sum_{j=1}^{n}a_{ij}\Gamma x_j(t), \quad i=1,\dots,n, $$ where $x_i(t)\in \bbfR^n$, $A=(a_{ij})\in \bbfR^{n\times n}$ is the coupling matrix with $a_{ij}\ge 0$ for $i\ne j$, and $\Gamma = \mathrm{diag}\{ \gamma_1,\gamma_2,\dots,\gamma_n\}$ with $\gamma_i>0$. The main result of the paper is a number of criteria for synchronization of the above system, i.e., for the stability of the invariant subspace $S=\{x: x_i=x_j, i\ne j\}$. Using Lyapunov function approach, conditions for global synchronization are given. Presented criteria for local synchronization are mathematically rigorous reformulation of the so-called master stability function approach [{\it L. M. Pecora, T. L. Carroll, G. A. Johnson, D. J. Mar} and {\it J. F. Heagy}, Chaos 7, 520--543 (1997; Zbl 0933.37030)]. The paper presents two examples of linearly coupled neural networks.

34D05Asymptotic stability of ODE
34C15Nonlinear oscillations, coupled oscillators (ODE)
34C30Manifolds of solutions of ODE (MSC2000)
34C14Symmetries, invariants (ODE)
34C28Complex behavior, chaotic systems (ODE)
34C60Qualitative investigation and simulation of models (ODE)
34D20Stability of ODE
Full Text: DOI
[1] Winfree, A. T.: The geometry of biological time. (1980) · Zbl 0464.92001
[2] Turing, A.: The chemical basis of morphogenesis. Phil. trans. R. soc. B 237, 37 (1952)
[3] Kuramoto, Y.: Chemical oscillations, waves, and turbulence. (1984) · Zbl 0558.76051
[4] Dhamala, M.; Jirsa, V. K.; Ding, M.: Transitions to synchrony in coupled bursting neurons. Phys. rev. Lett. 92, No. 2 (2004)
[5] Lloyd, A. L.; Jansen, V. A. A.: Spatiotemporal dynamics of epidemics: synchrony in metapopular models. Math. biosci. 188, 1-16 (2004) · Zbl 1036.92029
[6] Pecora, L. M.; Carroll, T. L.: Synchronization in chaotic systems. Phys. rev. Lett. 64, No. 8, 821-824 (1990) · Zbl 0938.37019
[7] Mirollo, R. E.; Strogatz, S. H.: Synchronization properties of pulse-coupled biological oscillators. SIAM J. Appl. math. 50, 1645-1662 (1990) · Zbl 0712.92006
[8] Heagy, J. F.; Carroll, T. L.; Pecora, L. M.: Synchronous chaos in coupled oscillator systems. Phys. rev. E 50, 1874-1885 (1994)
[9] Lashmanan, M.; Murali, K.: Chaos in nonlinear oscillator: controlling and synchronization. (1996)
[10] Huygens, C.: Horoloquim oscillatorium. (1672)
[11] Kunbert, L.; Agladze, K. I.; Krinsky, V. I.: Image processing using light-sensitive chemical waves. Nature 337, 244-247 (1989)
[12] Krinsky, V. I.; Biktashev, V. N.; Efimov, I. R.: Autowaves principles for parallel image processing. Physica D 49, 247-253 (1991)
[13] Perez-Manuzuri, V.; Perez-Villar, V.; Chua, L. O.: Autowaves for image processing on a two-dimensional CNN array of excitable nonlinear circuits: flat and wrinkled labyrinths. IEEE trans. Circuits syst. I 40, 174-181 (1995) · Zbl 0800.92038
[14] Lu, W. L.; Chen, T. P.: Synchronization of coupled connected neural networks with delays. IEEE trans. CAS-1 51, No. 12, 2491-2503 (2004)
[15] Vanwiggeren, G. D.; Roy, P.: Communication with chaotic laser. Science 279, No. 20, 1198-1200 (1998)
[16] Hoppensteadt, F. C.; Lzhikevich, E. M.: Pattern recognition via synchronization in phase-locked loop neural networks. IEEE trans. Neural netw. 11, No. 3, 734-738 (2000)
[17] Pecora, L. M.; Carroll, T.; Johnson, G.; Mar, D.; Fink, K. S.: Synchronization stability in coupled oscillator arrays: solution for arbitrary configuration. Internat. J. Bifur. chaos 10, No. 2, 273-290 (2000) · Zbl 1090.34542
[18] Wang, X. F.; Chen, G.: Synchronization in scale-free dynamical networks: robustness and fragility. IEEE trans. Circuits syst. I 49, No. 1, 54-62 (2002)
[19] Wu, C. W.; Chua, L. O.: Synchronization in an array of linearly coupled dynamical systems. IEEE trans. Circuits syst. I 42, No. 8, 430-447 (1995) · Zbl 0867.93042
[20] Wu, C. W.: Synchronization in networks of nonlinear dynamical systems coupled via a directed graph. Nonlinearity 18, 1057-1064 (2005) · Zbl 1089.37024
[21] Wang, X. F.; Chen, G.: Synchronization small-world dynamical networks. Internat. J. Bifur. chaos 12, No. 1, 187-192 (2002)
[22] Horn, P. A.; Johnson, C. R.: Matrix analysis’. (1985) · Zbl 0576.15001
[23] Minc, H.: Nonnegative matrices. (1988) · Zbl 0638.15008
[24] Baciotti, A.; Conti, R.; Marcellini, P.: Discontinuous ordinary differential equations and stabilization. (2000)
[25] Clarke, F. H.: Optimization and nonsmooth analysis. (1983) · Zbl 0582.49001
[26] Chen, Y.; Rangarajan, G.; Ding, M.: General stability analysis of synchronized dynamics in coupled systems. Phys. rev. E. 67, 026209 (2003)
[27] Ashwin, P.; Buescu, J.; Stewart, I.: From attractor to chaotic saddle, a tale of transverse instability. Nonlinearity 9, 703-737 (1996) · Zbl 0887.58034
[28] Alexander, J. C.; Kan, I.; Yorke, J. A.; You, Z.: Saddled basins. Internat. J. Bifur. chaos 2, 795-813 (1992) · Zbl 0870.58046
[29] Chen, G.; Zhou, J.; Liu, Z.: Global synchronization of coupled delayed neural networks with application to chaotic CNN models. Internat. J. Bifur. chaos 14, 2229-2249 (2004) · Zbl 1077.37506
[30] Zou, F.; Nosse, J. A.: Bifurcation and chaos in cellular neural networks. IEEE trans. CAS-1 40, No. 3, 166-173 (1993) · Zbl 0782.92003
[31] Chua, L. O.; Yang, L.: Cellular neural networks: theory. IEEE trans. Circuits syst. 35, 1257-1272 (1988) · Zbl 0663.94022
[32] Chua, L. O.; Yang, L.: Cellular neural networks: applications. IEEE trans. Circuits syst. 35, 1273-1290 (1988)
[33] Zhang, Y.; He, Z.: A secure communication scheme based on cellular neural networks. IEEE int. Conf. intell. Process. systems 1, 521-524 (1997)
[34] Watts, D. J.; Strogatz, S. H.: Collective dynamics of ’small-world’ networks. Nature 391, No. 4, 440-442 (1998)
[35] Newman, M. E. J.; Watts, D. J.: Renormalization group analysis of the small-world network model. Phys. lett. A 263, No. 9, 341-346 (1999) · Zbl 0940.82029
[36] Barabasi, A. -L.; Albert, R.: Emergence of scaling in random networks. Science 286, No. 15, 509-512 (1999) · Zbl 1226.05223