Xu, Gen Qi; Yung, Siu Pang; Li, Leong Kwan Stabilization of wave systems with input delay in the boundary control. (English) Zbl 1105.35016 ESAIM, Control Optim. Calc. Var. 12, 770-785 (2006). Summary: In the present paper, we consider a wave system that is fixed at one end and a boundary control input possessing a partial time delay of weight \((1-\mu)\) is applied over the other end. Using a simple boundary velocity feedback law, we show that the closed loop system generates a \(C_0\) group of linear operators. After a spectral analysis, we show that the closed loop system is a Riesz one, that is, there is a sequence of eigenvectors and generalized eigenvectors that forms a Riesz basis for the state Hilbert space. Furthermore, we show that when the weight \(\mu>\frac{1}{2}\), for any time delay, we can choose a suitable feedback gain so that the closed loop system is exponentially stable. When \(\mu=\frac{1}{2}\), we show that the system is at most asymptotically stable. When \(\mu<\frac{1}{2}\), the system is always unstable. Cited in 183 Documents MSC: 35B35 Stability in context of PDEs 49J25 Optimal control problems with equations with ret. arguments (exist.) (MSC2000) 49K25 Optimal control problems with equations with ret.arguments (nec.) (MSC2000) 93D15 Stabilization of systems by feedback 35B37 PDE in connection with control problems (MSC2000) 47D06 One-parameter semigroups and linear evolution equations 35L20 Initial-boundary value problems for second-order hyperbolic equations Keywords:Riesz basis; boundary velocity feedback law; closed loop system × Cite Format Result Cite Review PDF Full Text: DOI Numdam EuDML References: [1] I. Gumowski and C. Mira , Optimization in Control Theory and Practice . Cambridge University Press, Cambridge ( 1968 ). Zbl 0242.49002 · Zbl 0242.49002 [2] R. Datko , J. Lagness and M.P. Poilis , An example on the effect of time delays in boundary feedback stabilization of wave equations . SIAM J. Control Optim. 24 ( 1986 ) 152 - 156 . Zbl 0592.93047 · Zbl 0592.93047 · doi:10.1137/0324007 [3] R. Datko , Not all feedback stabilized hyperbolic systems are robust with respect to small time delay in their feedbacks . SIAM J. Control Optim. 26 ( 1988 ) 697 - 713 . Zbl 0643.93050 · Zbl 0643.93050 · doi:10.1137/0326040 [4] I.H. Suh and Z. Bien , Use of time delay action in the controller design . IEEE Trans. Automat. Control 25 ( 1980 ) 600 - 603 . Zbl 0432.93044 · Zbl 0432.93044 · doi:10.1109/TAC.1980.1102347 [5] W.H. Kwon , G.W. Lee and S.W. Kim , Performance improvement, using time delays in multi-variable controller design . INT J. Control 52 ( 1990 ) 1455 - 1473 . Zbl 0708.93024 · Zbl 0708.93024 · doi:10.1080/00207179008953604 [6] G. Abdallah , P. Dorato , J. Benitez-Read and R. Byrne , Delayed positive feedback can stabilize oscillatory systems , in ACC’ 93 (American control conference), San Francisco ( 1993 ) 3106 - 3107 . [7] N. Jalili and N. Olgac , Optimum delayed feedback vibration absorber for MDOF mechanical structure , in 37th IEEE CDC’98 (Conference on decision and control), Tampa, FL, December ( 1998 ) 4734 - 4739 . [8] W. Aernouts , D. Roose and R. Sepulchre , Delayed control of a Moore-Greitzer axial compressor model . Intern. J. Bifurcation Chaos 10 ( 2000 ) 115 - 1164 . [9] J.K. Hale and S.M. Verduyn-Lunel , Strong stabilization of neutral functional differential equations . IMA J. Math. Control Inform. 19 ( 2002 ) 5 - 24 . Zbl 1005.93026 · Zbl 1005.93026 · doi:10.1093/imamci/19.1_and_2.5 [10] J.K. Hale and S.M. Verduyn-Lunel , Introduction to functional differential equations , in Applied Mathematical Sciences, New York, Springer 99 ( 1993 ). MR 1243878 | Zbl 0787.34002 · Zbl 0787.34002 [11] S.I. Niculescu and R. Lozano , On the passivity of linear delay systems . IEEE Trans. Automat. Control 46 ( 2001 ) 460 - 464 . Zbl 1056.93610 · Zbl 1056.93610 · doi:10.1109/9.911424 [12] P. Borne , M. Dambrine , W. Perruquetti and J.P. Richard , Vector Lyapunov functions: nonlinear, time-varying, ordinary and functional differential equations . Stability and control: theory, methods and applications 13, Taylor and Francis, London ( 2003 ) 49 - 73 . Zbl 1039.34066 · Zbl 1039.34066 [13] Ö. Mörgul , On the stabilization and stability robustness against small delays of some damped wave equation . IEEE Trans. Automat. Control 40 ( 1995 ) 1626 - 1630 . Zbl 0831.93039 · Zbl 0831.93039 · doi:10.1109/9.412634 [14] Ö. Mörgul , Stabilization and disturbance rejection for the wave equation . IEEE Trans. Automat. Control 43 ( 1998 ) 89 - 95 . Zbl 0907.93047 · Zbl 0907.93047 · doi:10.1109/9.654893 [15] J.-L. Lions , Exact controllability, stabilization and perturbations for distributed parameter system . SIAM Rev. 30 ( 1988 ) 1 - 68 . Zbl 0644.49028 · Zbl 0644.49028 · doi:10.1137/1030001 [16] G.Q. Xu and B.Z. Guo , Riesz basis property of evolution equations in Hilbert spaces and application to a coupled string equation . SIAM J. Control Optim. 42 ( 2003 ) 966 - 984 . Zbl 1066.93028 · Zbl 1066.93028 · doi:10.1137/S0363012901400081 [17] M.A. Shubov , The Riesz basis property of the system of root vectors for the equation of a nonhomogeneous damped string: transformation operators method . Methods Appl. Anal. 6 ( 1999 ) 571 - 591 . Zbl 0986.74039 · Zbl 0986.74039 [18] G.Q. Xu and S.P. Yung , The expansion of semigroup and a criterion of Riesz basis . J. Differ. Equ. 210 ( 2005 ) 1 - 24 . Zbl 1131.47042 · Zbl 1131.47042 · doi:10.1016/j.jde.2004.09.015 [19] I.C. Gohberg and M.G. Krein , Introduction to the Theory of Linear Nonselfadjoint Operators . AMS Transl. Math. Monographs 18 ( 1969 ). MR 246142 | Zbl 0181.13504 · Zbl 0181.13503 [20] Lars V. Ahlfors , Complex Analysis. McGraw-Hill. MR 510197 | Zbl 0154.31904 · Zbl 0154.31904 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.