×

zbMATH — the first resource for mathematics

Spikes in two-component systems of nonlinear Schrödinger equations with trapping potentials. (English) Zbl 1105.35117
The authors analyse ground state solutions of two-component systems of NLS equations with trap potentials. Using singular perturbation technique they prove how trap potentials and the interspecies scattering length affect the location of spikes.

MSC:
35Q55 NLS equations (nonlinear Schrödinger equations)
35B25 Singular perturbations in context of PDEs
92C17 Cell movement (chemotaxis, etc.)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Ambrosetti, A.; Badiale, M.; Cingolani, S., Semiclassical states of nonlinear Schrödinger equations, Arch. ration. mech. anal., 140, 285-300, (1997) · Zbl 0896.35042
[2] Ambrosetti, A.; Malchiodi, A.; Secchi, S., Multiplicity results for some nonlinear singularly perturbed elliptic problems on \(R^n\), Arch. ration. mech. anal., 159, 253-271, (2001) · Zbl 1040.35107
[3] Ambrosetti, A.; Malchiodi, A.; Ni, W.-M., Singularly perturbed elliptic equations with symmetry: existence of solutions concentrating on spheres, part I, Comm. math. phys., 235, 427-466, (2003) · Zbl 1072.35019
[4] Byeon, J.; Wang, Z.-Q., Standing waves with a critical frequency for nonlinear Schrödinger equations, Arch. ration. mech. anal., 165, 295-316, (2002) · Zbl 1022.35064
[5] Cingolani, S.; Lazzo, M., Multiple positive solutions to nonlinear Schrödinger equations with competing potential functions, J. differential equations, 160, 118-138, (2000) · Zbl 0952.35043
[6] del Pino, M.; Felmer, P., Semi-classical states for nonlinear Schrödinger equations, J. funct. anal., 149, 245-265, (1997) · Zbl 0887.35058
[7] del Pino, M.; Felmer, P., Semi-classical states of nonlinear Schrödinger equations: A variational reduction method, Math. ann., 324, 1, 1-32, (2002) · Zbl 1030.35031
[8] M. del Pino, M. Kowalczyk, J. Wei, Concentrations on geodesics for nonlinear Schrödinger equations. Comm. Pure Appl. Math., in press
[9] Donley, E.A.; Claussen, N.R.; Cornish, S.L.; Roberts, J.L.; Cornell, E.A.; Wieman, C.E., Dynamics of collapsing and exploding bose – einstein condensates, Nature, 19, 412, 295-299, (2001)
[10] Ding, W.Y.; Ni, W.M., On the existence of positive entire solutions of a semilinear elliptic equations, Arch. ration. mech. anal., 91, 283-308, (1986) · Zbl 0616.35029
[11] Esry, B.D.; Greene, C.H.; Burke, J.P.; Bohn, J.L., Hartree – fock theory for double condensates, Phys. rev. lett., 78, 3594-3597, (1997)
[12] Floer, A.; Weinstein, A., Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential, J. funct. anal., 69, 397-408, (1986) · Zbl 0613.35076
[13] Gilbarg, D.; Trudinger, N.S., Elliptic partial differential equations of second order, (1983), Springer Berlin · Zbl 0691.35001
[14] Grossi, M., On the number of single-peak solutions of the nonlinear Schrödinger equation, Ann. inst. H. Poincaré, anal. non linéaire, 19, 261-280, (2002) · Zbl 1034.35127
[15] Gui, C., Existence of multi-bump solutions for nonlinear Schrödinger equations via variational method, Comm. partial differential equations, 21, 787-820, (1996) · Zbl 0857.35116
[16] Jeanjean, L.; Tanaka, K., Singularly perturbed elliptic problems with superlinear or asymptotically linear nonlinearities, Calc. var. partial differential equations, 21, 3, 287-318, (2004) · Zbl 1060.35012
[17] Kang, X.; Wei, J., On interacting bumps of semi-classical states of nonlinear Schrödinger equations, Adv. differential equations, 5, 7-9, 899-928, (2000) · Zbl 1217.35065
[18] Li, Y.Y., On a singularly perturbed elliptic equation, Adv. differential equations, 2, 6, 955-980, (1997) · Zbl 1023.35500
[19] Lin, T.C.; Wei, J., Spikes in two coupled nonlinear Schrödinger equations, Ann. inst. H. Poincaré anal. non linéaire, 22, 4, 403-439, (2005) · Zbl 1080.35143
[20] Lin, T.C.; Wei, J., Ground state of N coupled nonlinear Schrödinger equations in rn, n⩽3, Comm. math. phys., 255, 629-653, (2005) · Zbl 1119.35087
[21] Pitaevskii, L.; Stringari, S., Bose – einstein condensation, (2003), Oxford Univ. Press Oxford · Zbl 1110.82002
[22] Rabinowitz, P.H., On a class of nonlinear Schrödinger equation, Z. angew. math. phys., 43, 2, 270-291, (1992) · Zbl 0763.35087
[23] Sirakov, B., Standing wave solutions of the nonlinear Schrödinger equation in \(\mathbb{R}^N\), Ann. mat. pura appl., 4, 181, 73-83, (2002) · Zbl 1223.35291
[24] Timmermans, E., Phase separation of bose – einstein condensates, Phys. rev. lett., 81, 5718-5721, (1998)
[25] Wang, X., On concentration of positive bound states of nonlinear Schrödinger equations, Comm. math. phys., 229-244, (1993) · Zbl 0795.35118
[26] Wang, Z.-Q., Existence and symmetry of multi-bump solutions for nonlinear Schrödinger equations, J. differential equations, 159, 1, 102-137, (1999) · Zbl 1005.35083
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.