×

Supersymmetric WZ-Poisson sigma model and twisted generalized complex geometry. (English) Zbl 1105.53063

Summary: It has been shown recently that extended supersymmetry in twisted first-order sigma models is related to twisted generalized complex geometry in the target. In the general case there are additional algebraic and differential conditions relating the twisted generalized complex structure and the geometrical data defining the model. We study in the Hamiltonian formalism the case of vanishing metric, which is the supersymmetric version of the WZ-Poisson sigma model. We prove that the compatibility conditions reduce to an algebraic equation, which represents a considerable simplification with respect to the general case. We also show that this algebraic condition has a very natural geometrical interpretation. In the derivation of these results the notion of contravariant connections on twisted Poisson manifolds turns out to be very useful.

MSC:

53D17 Poisson manifolds; Poisson groupoids and algebroids
53C15 General geometric structures on manifolds (almost complex, almost product structures, etc.)
53C80 Applications of global differential geometry to the sciences
81T60 Supersymmetric field theories in quantum mechanics
81T10 Model quantum field theories

References:

[1] Hitchin N.: Generalized Calabi–Yau manifolds. Quart. J. Math. Oxford Ser. 54, (2003) arXiv:math.DG/0209099 · Zbl 1076.32019
[2] Gualtieri M. (2003). Generalized complex geometry. Oxford University, Oxford, DPhil thesis, arXiv:math.DG/0401221 · Zbl 1235.32020
[3] Gates S.J., Hull C.M., Rocek M. (1984). Twisted multiplets and new supersymmetric nonlinear sigma models. Nucl. Phys. B 248:157 · doi:10.1016/0550-3213(84)90592-3
[4] Lindstrom U. (2004). Generalized N=(2,2) Supersymmetric non-linear sigma models. Phys. Lett. B 587:216–224 arXiv:hep-th/0401100 · Zbl 1246.81375 · doi:10.1016/j.physletb.2004.03.014
[5] Lindstrom U., Minasian R., Tomasiello A., Zabzine M. (2005). Generalized complex manifolds and supersymmetry. Commun. Math. Phys. 257:235–256 arXiv:hep-th/0405085 · Zbl 1118.53048 · doi:10.1007/s00220-004-1265-6
[6] Zabzine M. Hamiltonian perspective on generalized complex structure. arXiv:hep-th/0502137
[7] Schaller P., Strobl T. (1994). Poisson structure induced (topological) field theories. Mod. Phys. Lett. A9:3129–3136 arXiv:hep-th/9405110 · Zbl 1015.81574
[8] Cattaneo A.S., Felder G. (2000). A path integral approach to the Kontsevich quantization formula. Commun. Math. Phys. 212: 591–611 arXiv: math.QA/9902090 · Zbl 1038.53088 · doi:10.1007/s002200000229
[9] Calvo, I., Falceto, F.: Star products and branes in Poisson-sigma models. arXiv:hep-th/0507050 · Zbl 1121.81104
[10] Klimcik C., Strobl T. (2002). WZW-Poisson manifolds. J. Geom. Phys. 43:341–344 arXiv:math.SG/0104189 · Zbl 1027.70023 · doi:10.1016/S0393-0440(02)00027-X
[11] Bergamin L. (2005). Generalized complex geometry and the Poisson sigma model. Mod. Phys. Lett. A 20:985–996 arXiv:hep-th/0409283 · Zbl 1067.81046 · doi:10.1142/S0217732305017184
[12] Severa P., Weinstein A. (2001). Poisson geometry with a 3-form background. Prog. Theor. Phys. Suppl. 144:145 arXiv:math.SG/0107133 · doi:10.1143/PTPS.144.145
[13] Vaisman, I.: Lectures on the geometry of Poisson manifolds. Birkhäuser, (1994) · Zbl 0810.53019
[14] Fernandes R.L. (2000). Connections in Poisson geometry I. Holonomy and invariants. J. Differential Geom. 54:303–365 arXiv:math.DG/0001129 · Zbl 1036.53060
[15] Calvo I., Falceto F. (2004). Poisson reduction and branes in Poisson-sigma models. Lett. Math. Phys. 70:231–247 arXiv:hep-th/0405176 · Zbl 1078.81067 · doi:10.1007/s11005-004-4302-7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.