## The Brownian web: characterization and convergence.(English)Zbl 1105.60075

The paper deals with the problem of characterization of the Brownian web, which is, rougly speaking, the collection of graphs of coalescing one-dimensional Brownian motions (with unit diffusion constant and zero drift) starting from all possible starting points in $$1+1$$-dimensional space-time.
The authors consider the Brownian web as a random variable whose values are the collection of all paths from all possible starting points. Then they give a new characterization of the Brownian web in terms of a counting variable $$\eta(t_0,t; a,b)$$ which is the number of distinct points in $$\mathbb R\times\{t_0+t\}$$ which are touched by paths in the Brownian web which also touch some point in $$[a,b]\times \{t_0\}$$. Using this characterization the authors obtain a general theorem about the convergence to a Brownian web of a sequence of random variables under suitable conditions. As corollary they obtain, in a diffusive limit, the convergence of coalescing random walks to a Brownian web.

### MSC:

 60K35 Interacting random processes; statistical mechanics type models; percolation theory 60J65 Brownian motion 60F17 Functional limit theorems; invariance principles 82B41 Random walks, random surfaces, lattice animals, etc. in equilibrium statistical mechanics 60D05 Geometric probability and stochastic geometry
Full Text:

### References:

 [1] Aizenman, M. (1998). Scaling limit for the incipient spanning clusters. In Mathematics of Multiscale Materials (K. M. Golden, G. R. Grimmett, R. D. James, G. W. Milton and P. N. Sen, eds.) 1–24. Springer, New York. · Zbl 0941.74013 [2] Aizenman, M. and Burchard, A. (1999). Hölder regularity and dimension bounds for random curves. Duke Math. J. 99 419–453. · Zbl 0944.60022 · doi:10.1215/S0012-7094-99-09914-3 [3] Aizenman, M., Burchard, A., Newman, C. M. and Wilson, D. B. (1999). Scaling limits for minimal and random spanning trees in two dimensions. Random Structures Algorithms 15 319–367. · Zbl 0939.60031 · doi:10.1002/(SICI)1098-2418(199910/12)15:3/4<319::AID-RSA8>3.0.CO;2-G [4] Arratia, R. (1979). Coalescing Brownian motions on the line. Ph.D. dissertation, Univ. Wisconsin, Madison. [5] Arratia, R. (1981). Coalescing Brownian motions and the voter model on $$\Z$$. Unpublished partial manuscript. Available from rarratia@math.usc.edu. [6] Arratia, R. (1981). Limiting point processes for rescalings of coalescing and annihilating random walks on $$\Z\spd$$. Ann. Probab. 9 909–936. JSTOR: · Zbl 0496.60098 · doi:10.1214/aop/1176994264 [7] Bramson, M. and Griffeath, D. (1980). Clustering and dispersion rates for some interacting particle systems on $$\Z^1$$. Ann. Probab. 8 183–213. JSTOR: · Zbl 0429.60098 · doi:10.1214/aop/1176994771 [8] Burdzy, K. and Le Gall, J.-F. (2001). Super-Brownian motion with reflecting historical paths. Probab. Theory Related Fields 121 447–491. · Zbl 1001.60086 · doi:10.1007/s004400100157 [9] Burdzy, K. and Mytnik, L. (2002). Super-Brownian motion with reflecting historical paths. II Convergence of approximations. Preprint. Available at www.math. washington.edu/ burdzy/preprints.shtml. · Zbl 1082.60076 · doi:10.1007/s00440-004-0413-4 [10] Donsker, M. D. (1951). An invariance principle for certain probability limit theorems. Mem. Amer. Math. Soc. 6 1–12. · Zbl 0042.37602 [11] Ferrari, P. A., Fontes, L. R. G. and Wu, X. Y. (2003). Two dimensional Poisson trees converge to the Brownian web. Available at arxiv.org/abs/math.PR/0304247. · Zbl 1073.60094 · doi:10.1016/j.anihpb.2004.06.003 [12] Fontes, L. R. G., Isopi, M., Newman, C. M. and Ravishankar, K. (2003). The Brownian web: Characterization and convergence. Available at arxiv.org/abs/math.PR/0304119. · Zbl 1105.60075 · doi:10.1214/009117904000000568 [13] Fontes, L. R. G., Isopi, M., Newman, C. M. and Ravishankar, K. (2002). The Brownian web. Proc. Nat. Acad. Sci. U.S.A. 99 15888–15893. · Zbl 1069.60068 · doi:10.1073/pnas.252619099 [14] Fontes, L. R. G., Isopi, M., Newman, C. M. and Stein, D. L. (2001). 1D aging. Unpulished manuscript. [15] Fontes, L. R. G., Isopi, M., Newman, C. M. and Stein, D. L. (2001). Aging in 1D discrete spin models and equivalent systems. Phys. Rev. Lett. 87 110201-1–110201-4. [16] Gangopadhyay, S., Roy, R. and Sarkar, A. (2004). Random oriented trees: A model of drainage networks. Ann. Appl. Probab. 14 1242–1266. · Zbl 1047.60098 · doi:10.1214/105051604000000288 [17] Grabiner, D. (1999). Brownian motion in a Weyl chamber, non-colliding particles, and random matrices. Ann. Inst. H. Poincaré Probab. Statist. 35 177–204. · Zbl 0937.60075 · doi:10.1016/S0246-0203(99)80010-7 [18] Harris, T. E. (1978). Additive set-valued Markov processes and graphical methods. Ann. Probab. 6 355–378. JSTOR: · Zbl 0378.60106 · doi:10.1214/aop/1176995523 [19] Harris, T. E. (1984). Coalescing and noncoalescing flows in $$\R^1$$. Stochastic Process. Appl. 17 187–210. · Zbl 0536.60016 · doi:10.1016/0304-4149(84)90001-2 [20] Newman, C. M., Ravishankar, K. and Sun, R. (2004). Convergence of coalescing nonsimple random walks to the Brownian web. Unpublished manuscript. · Zbl 1067.60099 [21] Nguyen, B. (1990). Percolation of coalescing random walks. J. Appl. Probab. 27 269–277. JSTOR: · Zbl 0707.60097 · doi:10.2307/3214646 [22] Piterbarg, V. V. (1998). Expansions and contractions of isotropic stochastic flows of homeomorphisms. Ann. Probab. 26 479–499. · Zbl 0936.60041 · doi:10.1214/aop/1022855641 [23] Rodriguez-Iturbe, I. and Rinaldo, A. (1997). Fractal River Basins : Chance and Self-Organization . Cambridge Univ. Press. · Zbl 0946.82039 · doi:10.1023/A:1023069201470 [24] Scheidegger, A. E. (1967). A stochastic model for drainage patterns into an intramontane trench. Bull. Assoc. Sci. Hydrol. 12 15–20. [25] Soucaliuc, F., Tóth, B. and Werner, W. (2000). Reflection and coalescence between independent one-dimensional Brownian paths. Ann. Inst. H. Poincaré Probab. Statist. 36 509–545. · Zbl 0968.60072 · doi:10.1016/S0246-0203(00)00136-9 [26] Tóth, B. and Werner, W. (1998). The true self-repelling motion. Probab. Theory Related Fields 111 375–452. · Zbl 0912.60056 · doi:10.1007/s004400050172 [27] Troutman, B. and Karlinger, M. (1998). Spatial channel network models in hydrology. In Stochastic Methods in Hydrology (O. E. Barndorff-Nielsen, V. K. Gupta, V. Perez-Abreu and E. Waymire, eds.) 85–121. World Scientific, Singapore. [28] Tsirelson, B. (2004). Scaling limit, noise, stability. Lectures on Probability Theory and Statistics: Ecole d’$$\!$$Eté de Probabilités de Saint-Flour XXXII . Lecture Notes in Math. 1840 1–106. Springer, Berlin. · Zbl 1056.60009 [29] Varadhan, S. R. S. (1968). Stochastic Processes . Courant Institute of Math. Sciences, New York. · Zbl 1133.60004 [30] Waymire, E. (2002). Multiscale and multiplicative processes in fluid flows. In Lectures on Multiscale and Multiplicative Processes in Fluid Flows . Centre for Mathematical Physics and Stochastics Lecture Notes 11 1–75. Dept. Math. Sciences, Univ. Aarhus. [31] Winn, D. (2002). Gradient-directed diffusions and river network models. In Lectures on Multiscale and Multiplicative Processes in Fluid Flows . Centre for Mathematical Physics and Stochastics Lecture Notes 11 149–154. Dept. Math. Sciences, Univ. Aarhus.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.