Loh, Wei-Liem On the asymptotic distribution of scrambled net quadrature. (English) Zbl 1105.62304 Ann. Stat. 31, No. 4, 1282-1324 (2003). Summary: Recently, in a series of articles, Owen proposed the use of scrambled (t.m.s) nets and (t.s) sequences in high-dimensional numerical integration. These scrambled nets and sequences achieve the superior accuracy of equidistribution methods while allowing for the simpler error estimation techniques of Monte Carlo methods. The main aim of this article is to use Stein’s method to study the asymptotic distribution of the scrambled (0.m.s) net integral estimate. In particular, it is shown that, for suitably smooth integrands on the s-dimensional unit hypercube, the estimate has an asymptotic normal distribution. Cited in 1 ReviewCited in 18 Documents MSC: 62E20 Asymptotic distribution theory in statistics 65C05 Monte Carlo methods 65C60 Computational problems in statistics (MSC2010) × Cite Format Result Cite Review PDF Full Text: DOI Euclid References: [1] BOLTHAUSEN, E. (1984). An estimate of the remainder in a combinatorial central limit theorem. Z. Wahrsch. Verw. Gebiete 66 379-386. · Zbl 0563.60026 · doi:10.1007/BF00533704 [2] BOLTHAUSEN, E. and GÖTZE, F. (1993). The rate of convergence for multivariate sampling statistics. Ann. Statist. 21 1692-1710. · Zbl 0798.62023 · doi:10.1214/aos/1176349393 [3] DAVIS, P. J. and RABINOWITZ, P. (1984). Methods of Numerical Integration, 2nd ed. Academic Press, Orlando, FL. · Zbl 0537.65020 [4] EVANS, M. and SWARTZ, T. (2000). Approximating Integrals via Monte Carlo and Deterministic Methods. Oxford Univ. Press. · Zbl 0958.65009 [5] HICKERNELL, F. J. and YUE, R.-X. (2000). The mean square discrepancy of scrambled (t, s)-sequences. SIAM J. Numer. Anal. 38 1089-1112. · Zbl 1049.65005 · doi:10.1137/S0036142999358019 [6] HO, S. T. and CHEN, L. H. Y. (1978). An Lp bound for the remainder in a combinatorial central limit theorem. Ann. Probab. 6 231-249. · Zbl 0375.60028 · doi:10.1214/aop/1176995570 [7] HONG, H. S., HICKERNELL, F. J. and WEI, G. (2001). The distribution of the discrepancy of scrambled digital (t, m, s)-nets. · Zbl 1020.65009 · doi:10.1016/S0378-4754(02)00238-0 [8] LOH, W.-L. (1996a). A combinatorial central limit theorem for randomized orthogonal array sampling designs. Ann. Statist. 24 1209-1224. · Zbl 0869.62018 · doi:10.1214/aos/1032526964 [9] LOH, W.-L. (1996b). On Latin hy percube sampling. Ann. Statist. 24 2058-2080. · Zbl 0867.62005 · doi:10.1214/aos/1069362310 [10] MCKAY, M. D., BECKMAN, R. J. and CONOVER, W. J. (1979). A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21 239-245. JSTOR: · Zbl 0415.62011 · doi:10.2307/1268522 [11] NIEDERREITER, H. (1992). Random Number Generation and Quasi-Monte Carlo Methods. SIAM, Philadelphia. · Zbl 0761.65002 [12] NIEDERREITER, H. and XING, C. (1998). Nets, (t, s)-sequences, and algebraic geometry. Random and Quasi-Random Point Sets. Lecture Notes in Statist. 138 267-302. Springer, New York. · Zbl 0923.11113 [13] OWEN, A. B. (1992a). Orthogonal array s for computer experiments, integration and visualization. Statist. Sinica 2 439-452. · Zbl 0822.62064 [14] OWEN, A. B. (1992b). A central limit theorem for Latin hy percube sampling. J. R. Statist. Soc. Ser. B 54 541-551. JSTOR: · Zbl 0776.62041 [15] OWEN, A. B. (1995). Randomly permuted (t, m, s)-nets and (t, s)-sequences. Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing. Lecture Notes in Statist. 106 299-317. Springer, New York. · Zbl 0831.65024 [16] OWEN, A. B. (1997a). Monte Carlo variance of scrambled net quadrature. SIAM J. Numer. Anal. 34 1884-1910. JSTOR: · Zbl 0890.65023 · doi:10.1137/S0036142994277468 [17] OWEN, A. B. (1997b). Scrambled net variance for integrals of smooth functions. Ann. Statist. 25 1541-1562. · Zbl 0886.65018 · doi:10.1214/aos/1031594731 [18] OWEN, A. B. (1998). Scrambling Sobol’ and Niederreiter-Xing points. J. Complexity 14 466-489. · Zbl 0916.65017 · doi:10.1006/jcom.1998.0487 [19] SHORACK, G. R. (2000). Probability for Statisticians. Springer, New York. · Zbl 0951.62005 · doi:10.1007/b98901 [20] STEIN, C. M. (1972). A bound for the error in the normal approximation to the distribution of a sum of dependent random variables. Proc. Sixth Berkeley Sy mp. Math. Statist. Probab. 2 583-602. Univ. California Press, Berkeley. · Zbl 0278.60026 [21] STEIN, C. M. (1986). Approximate Computation of Expectations. IMS, Hay ward, CA. · Zbl 0721.60016 [22] STEIN, M. L. (1987). Large sample properties of simulations using Latin hy percube sampling. Technometrics 29 143-151. JSTOR: · Zbl 0627.62010 · doi:10.2307/1269769 [23] TANG, B. (1993). Orthogonal array-based Latin hy percubes. J. Amer. Statist. Assoc. 88 1392-1397. JSTOR: · Zbl 0792.62066 · doi:10.2307/2291282 [24] YUE, R.-X. (1999). Variance of quadrature over scrambled unions of nets. Statist. Sinica 9 451-473. · Zbl 0952.65001 [25] YUE, R.-X. and MAO, S.-S. (1999). On the variance of quadrature over scrambled nets and sequences. Statist. Probab. Lett. 44 267-280. · Zbl 0970.65006 · doi:10.1016/S0167-7152(99)00018-8 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.