×

zbMATH — the first resource for mathematics

Tensor product space ANOVA models. (English) Zbl 1105.62329
Summary: To deal with the curse of dimensionality in high-dimensional nonparametric problems, we consider using tensor product space ANOVA models, which extend the popular additive models and are able to capture interactions of any order. The multivariate function is given an ANOVA decomposition, that is, it is expressed as a constant plus the sum of functions of one variable (main effects), plus the sum of functions of two variables (two-factor interactions) and so on. We assume the interactions to be in tensor product spaces. We show in both regression and white noise settings the optimal rate of convergence for the TPS-ANOVA model is within a log factor of the one-dimensional optimal rate, and that the penalized likelihood estimator in TPS-ANOVA achieves this rate of convergence. The quick optimal rate of the TPS-ANOVA model makes it very preferable in high-dimensional function estimation. Many properties of the tensor product space of Sobolev-Hilbert spaces are also given.

MSC:
62G05 Nonparametric estimation
62H12 Estimation in multivariate analysis
62J10 Analysis of variance and covariance (ANOVA)
46N30 Applications of functional analysis in probability theory and statistics
PDF BibTeX XML Cite
Full Text: DOI Euclid
References:
[1] Aubin,J. P. (1979). Applied Functional Analysis. Wiley, New York. · Zbl 0424.46001
[2] Brown,L. D. and Low,M. G. (1996). Asymptotic equivalence of nonparametric regression and white noise. Ann.Statist.24 2384-2398. · Zbl 0867.62022
[3] Chen,Z. (1991). Interaction spline models and their convergence rates. Ann.Statist.19 1855-1868. · Zbl 0738.62065
[4] Cox,D. D. (1988). Approximation of method of regularization estimators. Ann.Statist.16 694-712. · Zbl 0671.62044
[5] Cox,D. D. and O’Sullivan,F. (1990). Asymptotic analysis of penalized likelihood and related estimators. Ann.Statist.18 1676-1695. · Zbl 0719.62051
[6] Donoho,D. L.,Liu,R. C. and MacGibbon,B. (1990). Minimax risk over hyperrectangles, and implications. Ann.Statist.18 1416-1437. · Zbl 0705.62018
[7] Gu,C. and Qiu,C. (1993). Smoothing spline density estimation: theory. Ann.Statist.21 217-234. · Zbl 0770.62030
[8] Gu,C. and Qiu,C. (1994). Penalized likelihood regression: a simple asymptotic analysis. Statist. Sinica 4 297-304. · Zbl 0823.62050
[9] Gu,C. (1996). Penalized likelihood hazard estimation: a general procedure. Statist.Sinica 6 861-876. · Zbl 1076.62556
[10] Hastie,T. J. and Tibshirani,R. J. (1990). Generalized Additive Models. Chapman and Hall, London. · Zbl 0747.62061
[11] Hastie,T. J. and Tibshirani,R. J. (1993). Varying-coefficient models. J.Roy.Statist.Soc.Ser.B 55 757-796. JSTOR: · Zbl 0796.62060
[12] Huber,P. J. (1981). Robust Statistics. Wiley, New York. · Zbl 0536.62025
[13] Kadison,R. V. and Ringrose,J. R. (1997). Fundamentals of the Theory of Operator Algebras. Amer. Math. Soc., Providence, RI. · Zbl 0888.46039
[14] Lin,Y. (1998). Tensor product space ANOVA models in multivariate function estimation. Ph.D. dissertation, Dept. Statistics, Univ. Pennsylvania.
[15] Nussbaum,M. (1996). Asymptotic equivalence of density estimation and Gaussian white noise. Ann.Statist.24 2399-2430. · Zbl 0867.62035
[16] Oden,J. T. and Reddy,J. N. (1976). An Introduction to the Mathematical Theory of Finite Elements. Wiley, New York. · Zbl 0336.35001
[17] O’Sullivan,F. (1993). Nonparametric estimation in the Cox model. Ann.Statist.21 124-145. · Zbl 0782.62046
[18] Silverman,B. W. (1982). On the estimation of a probability density function by the maximum penalised likelihood method. Ann.Statist.10 795-810. · Zbl 0492.62034
[19] Stone,C. J. (1980). Optimal rates of convergence for nonparametric estimators. Ann.Statist.8 1348-1360. · Zbl 0451.62033
[20] Stone,C. J. (1982). Optimal global rates of convergence for nonparametric regression. Ann. Statist. 10 1040-1053. · Zbl 0511.62048
[21] Stone,C. J. (1985). Additive regression and other nonparametric models. Ann.Statist.13 689-705. · Zbl 0605.62065
[22] Wahba,G. (1990). Spline models for Observational Data. SIAM, Philadelphia. · Zbl 0813.62001
[23] Wahba,G.,Wang,Y.,Gu,C.,Klein,R. and Klein,B. (1995). Smoothing spline ANOVA for exponential families, with application to the Wisconsin epidemiological study of diabetic retinopathy. Ann.Statist.23 1865-1895. · Zbl 0854.62042
[24] Weinberger,H. F. (1974). Variational Methods for Eigenvalue Approximation. SIAM, Philadelphia. · Zbl 0296.49033
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.