×

A nonparametric dynamic additive regression model for longitudinal data. (English) Zbl 1105.62339

Summary: In this work we study additive dynamic regression models for longitudinal data. These models provide a flexible and nonparametric method for investigating the time-dynamics of longitudinal data. The methodology is aimed at data where measurements are recorded at random time points. We model the conditional mean of responses given the full internal history and possibly time-varying covariates. We derive the asymptotic distribution for a new nonparametric least squares estimator of the cumulative time-varying regression functions. Based on the asymptotic results, confidence bands may be computed and inference about time-varying coefficients may be drawn. We propose two estimators of the cumulative regression function. One estimator that involves smoothing and one that does not. The latter, however, has twice the variance as the smoothing based estimator. Goodness of fit of the model is considered using martingale residuals. Finally, we also discuss how partly-conditional mean models in which the mean of the response is regressed onto selected time-varying covariates may be analysed in the same framework. We apply the methods to longitudinal data on height development for cystic fibrosis patients.

MSC:

62G08 Nonparametric regression and quantile regression
62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)
62E20 Asymptotic distribution theory in statistics
62G20 Asymptotic properties of nonparametric inference
Full Text: DOI

References:

[1] Aalen, O. O. (1975). Statistical inference for a family of counting processes. Ph.D. dissertation, Dept. Statistics, Univ. California, Berkeley. · Zbl 0389.62025
[2] Aalen, O. O. (1978). Nonparametric inference for a family of counting processes. Ann. Statist. 6 534-545. · Zbl 0389.62025 · doi:10.1214/aos/1176344247
[3] Aalen, O. O. (1980). A model for non-parametric regression analysis of counting processes. Mathematical Statistics and Probability. Lecture Notes in Statist. 2 1-25. Springer, New York. · Zbl 0445.62095
[4] Aalen, O. O. (1989). A linear regression model for the analysis of life times. Statistics in Medicine 8 907-925.
[5] Aalen, O. O. (1993). Further results on the non-parametric linear regression model in survival analysis. Statistics in Medicine 12 1569-1588.
[6] Andersen, P. K., Borgan, Ø., Gill, R. and Keiding, N. (1993). Statistical Models Based on Counting Processes. Springer, New York. · Zbl 0769.62061
[7] Brémaud, P. (1981). Point Processes and Queues, Martingale Dynamics. Springer, New York.
[8] Diggle, P., Liang, K. and Zeger, S. (1994). Analysis of Longitudinal Data. Cambridge Univ. Press. · Zbl 0821.62093
[9] Fan, J. and Zhang, W. (1999). Statistical estimation in varying-coefficient models. Ann. Statistics 27 1491-1518. · Zbl 0977.62039 · doi:10.1214/aos/1017939139
[10] Hall, W. and Wellner, J. (1980). Confidence bands for a survival curve from censored data. Biometrika 67 133-143. JSTOR: · Zbl 0423.62078 · doi:10.1093/biomet/67.1.133
[11] Hastie, T. and Tibshirani, R. (1993). Varying-coefficient models. J. Roy. Statist. Soc. Ser. B 55 757-796. JSTOR: · Zbl 0796.62060
[12] Hoover, P., Rice, J., Wu, C. and Yang, L. P. (1998). Nonparametric smoothing estimates of time-varying coefficient models with longitudinal data. Biometrika 85 809-822. JSTOR: · Zbl 0921.62045 · doi:10.1093/biomet/85.4.809
[13] Huffer, F. W. and McKeague, I. W. (1991). Weighted least squares estimation for Aalen’s additive risk model. J. Amer. Statist. Assoc. 86 114-129.
[14] Laursen, E., Koch, C., Petersen, J. and Muller, J. (1999). Secular changes in anthropometric data in cystic fibrosis patients. Acta Pædiatrica 88 171-179.
[15] Liang, K. Y. and Zeger, S. L. (1986). Longitudinal data analysis using generalized linear models. Biometrika 73 13-22. JSTOR: · Zbl 0595.62110 · doi:10.1093/biomet/73.1.13
[16] Lin, D. Y. and Ying, Z. (1994). Semiparametric analysis ofthe additive risk model. Biometrika 81 61-71. JSTOR: · Zbl 0796.62099 · doi:10.1093/biomet/81.1.61
[17] Martinussen, T. and Scheike, T. H. (1998). A non-parametric dynamic additive regression model for longitudinal data. Research report, Dept. Biostatistics, Univ. Copenhagen. · Zbl 1105.62339
[18] Martinussen, T. and Scheike, T. H. (1999). A semi-parametric additive regression model for longitudinal data. Biometrika 86 691-702. JSTOR: · Zbl 0938.62043 · doi:10.1093/biomet/86.3.691
[19] Martinussen, T. and SØrensen, T. I. A. (1998). Age-dependent U-shaped risk functions and Aalen’s additive risk model. Biometrics 54 989-1001. JSTOR: · Zbl 1058.62630 · doi:10.2307/2533851
[20] McKeague, I. W. (1988). Asymptotic theory for weighted least squares estimators in Aalen’s additive risk model. Contemp. Math. 80 139-152. · Zbl 0684.62068
[21] McKeague, I. W. and Sasieni, P. D. (1994). A partly parametric additive risk model. Biometrika 81 501-514. JSTOR: · Zbl 0812.62041 · doi:10.1093/biomet/81.3.501
[22] McKeague, I. W. and Zhang, M. J. (1994). Identification ofnonlinear time series from first order cumulative characteristics. Ann. Statist. 22 495-514. · Zbl 0797.62073 · doi:10.1214/aos/1176325381
[23] Murphy, S. A. and Li, B. (1995). Projected partial likelihood and its application to longitudinal data. Biometrika 82 399-406. JSTOR: · Zbl 0823.62091 · doi:10.1093/biomet/82.2.399
[24] Murphy, S. A. (1995). A central limit theorem for local martingales with applications to the analysis oflongitudinal data. Scandinavian J. Statist. 22 279-294. · Zbl 0835.60016
[25] Pepe, M. and Couper, D. (1997). Modeling partly conditional means with longitudinal data. J. Amer. Statist. Assoc. 92 991-998. JSTOR: · Zbl 1067.62582 · doi:10.2307/2965563
[26] Ramlau-Hansen, H. (1983). Smoothing counting process intensities by means ofkernel functions. Ann. Statist. 11 453-466. · Zbl 0514.62050 · doi:10.1214/aos/1176346152
[27] Scheike, T. H. (1994). Parametric regression for longitudinal data with counting process measurement times. Scandinavian J. Statist. 21 245-263. · Zbl 0815.62064
[28] Scheike, T. H. and Zhang, M. (1998). Cumulative regression function tests for longitudinal data. Ann. Statist. 26 1328-1355. · Zbl 0930.62049 · doi:10.1214/aos/1024691245
[29] Scheike, T. H. (1997). A general framework for longitudinal data through conditional distributions. Biometrical J. 39 57-67. · Zbl 0894.60068 · doi:10.1002/bimj.4710390107
[30] Scheike, T. H. (2000). Comparison ofnon-parametric regression functions through their cumulatives. Statist. Probab. Lett. 46 21-32. · Zbl 0941.62044 · doi:10.1016/S0167-7152(99)00083-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.