zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On the degrees of freedom in shape-restricted regression. (English) Zbl 1105.62340
Summary: For the problem of estimating a regression function, $\mu$ say, subject to shape constraints, like monotonicity or convexity, it is argued that the divergence of the maximum likelihood estimator provides a useful measure of the effective dimension of the model. Inequalities are derived for the expected mean squared error of the maximum likelihood estimator and the expected residual sum of squares. These generalize equalities from the case of linear regression. As an application, it is shown that the maximum likelihood estimator of the error variance $\sigma^2$ is asymptotically normal with mean $\sigma^2$ and variance $2\sigma_2/n$. For monotone regression, it is shown that the maximum likelihood estimator of $\mu$ attains the optimal rate of convergence, and a bias correction to the maximum likelihood estimator of $\sigma^2$ is derived.

MSC:
62G08Nonparametric regression
62F12Asymptotic properties of parametric estimators
WorldCat.org
Full Text: DOI
References:
[1] Breiman, L. (1968). Probability. Addison-Weseley, Reading, MA. · Zbl 0174.48801
[2] Donoho, D. (1990). Gelfand n-widths and the method of least squares. Unpublished manuscript.
[3] Donoho, D. and Johnstone, I. (1995). Adapting to unknown smoothness via wavelet shrinkage. J. Amer. Statist. Assoc. 90 1200-1225. JSTOR: · Zbl 0869.62024 · doi:10.2307/2291512 · http://links.jstor.org/sici?sici=0162-1459%28199512%2990%3A432%3C1200%3AATUSVW%3E2.0.CO%3B2-K&origin=euclid
[4] Efromovich, S. (1997). On quasi-linear wavelet estimation. J. Amer. Statist. Assoc. 94 189-204. JSTOR: · Zbl 1072.62557 · doi:10.2307/2669694 · http://links.jstor.org/sici?sici=0162-1459%28199903%2994%3A445%3C189%3AQWE%3E2.0.CO%3B2-%23&origin=euclid
[5] Feller, W. (1971). An Introduction to Probability Theory and Its Applications 2. Wiley, New York. · Zbl 0219.60003
[6] Gasser, T. Sroka, L. and Jennen-Steinmetz, C. (1986). Residual variance and residual pattern in non-linear regression. Biometrika 73 625-633. JSTOR: · Zbl 0649.62035 · doi:10.1093/biomet/73.3.625 · http://links.jstor.org/sici?sici=0006-3444%28198612%2973%3A3%3C625%3ARVARPI%3E2.0.CO%3B2-V&origin=euclid
[7] Groeneboom, P. (1985). Estimating a monotone density. In Proceedings of the Berkeley Conference in Honor of Jerzy Neyman and Jack Kiefer (L. Le Cam and R. Olshen, eds.) 2 539-558. Wadsworth and Brooks/Cole, Belmont, CA.
[8] Groeneboom, P. (1989). Brownian motion with a parabolic drift and airy functions. Probab. Theory Related Fields 81 79-109. · doi:10.1007/BF00343738
[9] Hastie, T. and Tibshirani, R. (1990). Generalized Additive Models. Chapman and Hall, London. · Zbl 0747.62061
[10] Klass, M. (1983). On the maximum of a random walkwith a small negative drift. Ann. Probab. 11 491-505. · Zbl 0514.60069 · doi:10.1214/aop/1176993498
[11] Meyer, M. (1996). Shape restricted inference with applications to nonparametric regression, smooth nonparametric regression, and density estimation. Ph.D. thesis, Dept. statistics, Univ. Michigan.
[12] Meyer, M. and Woodroofe, M. (1998). Variance estimation in monotone regression. Technical Report 322, Dept. Statistics, Univ. Michigan.
[13] Rice, J. (1984). Bandwidth choice for nonparametric regression. Ann. Statist. 12 1215-1230. · Zbl 0554.62035 · doi:10.1214/aos/1176346788
[14] Robertson, T., Wright, F. and Dykstra, R. (1988). Order Restricted Inference, Wiley, New York. · Zbl 0645.62028
[15] Stein, C. (1981). Estimation of the mean of a multivariate normal distribution. Ann. Statist. 9 1135-1151. · Zbl 0476.62035 · doi:10.1214/aos/1176345632
[16] Van der Geer, S. (1990). Estimating a regression function. Ann. Statist. 18 907-924. · Zbl 0709.62040 · doi:10.1214/aos/1176347632
[17] Woodroofe, M. (1982). Non-linear Renewal Theory in Sequential Analysis. SIAM, Philadelphia. · Zbl 0487.62062
[18] Wright, F. T. (1981). The asymptotic behavior of monotone regression estimates. Ann. Statist. 9 449-453. · Zbl 0471.62062 · doi:10.1214/aos/1176345411