Zuo, Yijun; Cui, Hengjian; He, Xuming On the Stahel-Donoho estimator and depth-weighted means of multivariate data. (English) Zbl 1105.62349 Ann. Stat. 32, No. 1, 167-188 (2004). Summary: The depth of multivariate data can be used to construct weighted means as robust estimators of location. The use of projection depth leads to the Stahel-Donoho estimator as a special case. In contrast to maximal depth estimators, the depth-weighted means are shown to be asymptotically normal under appropriate conditions met by depth functions commonly used in the current literature. We also confirm through a finite-sample study that the Stahel-Donoho estimator achieves a desirable balance between robustness and efficiency at Gaussian models. Cited in 1 ReviewCited in 45 Documents MSC: 62H12 Estimation in multivariate analysis 62H05 Characterization and structure theory for multivariate probability distributions; copulas 62F12 Asymptotic properties of parametric estimators 62F35 Robustness and adaptive procedures (parametric inference) Keywords:asymptotic normality; depth; breakdown point; efficiency; projection depth; \(L\)-estimator; robustness × Cite Format Result Cite Review PDF Full Text: DOI Euclid References: [1] Arcones, M. A. and Giné, E. (1993). Limit theorems for \(U\)-processes. Ann. Probab. 21 1494–1542. JSTOR: · Zbl 0789.60031 · doi:10.1214/aop/1176989128 [2] Bai, Z. D. and He, X. (1999). Asymptotic distributions of the maximal depth estimators for regression and multivariate location. Ann. Statist. 27 1616–1637. · Zbl 1007.62009 · doi:10.1214/aos/1017939144 [3] Chakraborty, B., Chaudhuri, P. and Oja, H. (1998). Operating transformation retransformation on spatial median and angle test. Statist. Sinica 8 767–784. · Zbl 0915.62051 [4] Cui, H. and Tian, Y. (1994). Estimation of the projection absolute median deviation and its application (in Chinese). J. Systems Sci. Math. Sci. 14 63–72. · Zbl 0826.62048 [5] Davies, P. L. (1987). Asymptotic behavior of \(S\)-estimates of multivariate location parameters and dispersion matrices. Ann. Statist. 15 1269–1292. JSTOR: · Zbl 0645.62057 · doi:10.1214/aos/1176350505 [6] Donoho, D. L. (1982). Breakdown properties of multivariate location estimators. Qualifying paper, Dept. Statistics, Harvard Univ. [7] Donoho, D. L. and Gasko, M. (1992). Breakdown properties of location estimates based on halfspace depth and projected outlyingness. Ann. Statist. 20 1803–1827. JSTOR: · Zbl 0776.62031 · doi:10.1214/aos/1176348890 [8] Donoho, D. L. and Huber, P. J. (1983). The notion of breakdown point. In A Festschrift for Erich L. Lehmann (P. J. Bickel, K. A. Doksum and J. L. Hodges, Jr., eds.) 157–184. Wadsworth, Belmont, CA. · Zbl 0523.62032 [9] Dümbgen, L. (1992). Limit theorem for the simplicial depth. Statist. Probab. Lett . 14 119–128. · Zbl 0758.60030 [10] Gather, U. and Hilker, T. (1997). A note on Tyler’s modification of the MAD for the Stahel–Donoho estimator. Ann. Statist. 25 2024–2026. · Zbl 0881.62033 · doi:10.1214/aos/1069362384 [11] He, X. (1991). A local breakdown property of robust tests in linear regression. J. Multivariate Anal. 38 294–305. · Zbl 0736.62028 · doi:10.1016/0047-259X(91)90047-6 [12] He, X. and Wang, G. (1996). Cross-checking using the minimum volume ellipsoid estimator. Statist. Sinica 6 367–374. · Zbl 0843.62065 [13] He, X. and Wang, G. (1997). Convergence of depth contours for multivariate datasets. Ann. Statist. 25 495–504. · Zbl 0873.62053 · doi:10.1214/aos/1031833661 [14] Kent, J. T. and Tyler, D. E. (1996). Constrained \(M\)-estimation multivariate location and scatter. Ann. Statist. 24 1346–1370. · Zbl 0862.62048 · doi:10.1214/aos/1032526973 [15] Kim, J. and Hwang, J. (2001). Asymptotic properties of location estimators based on projection depth. · Zbl 1007.62018 [16] Liu, R. Y. (1990). On a notion of data depth based on random simplices. Ann. Statist. 18 405–414. JSTOR: · Zbl 0701.62063 · doi:10.1214/aos/1176347507 [17] Liu, R. Y. (1992). Data depth and multivariate rank tests. In \(L_1\)-Statistical Analysis and Related Methods (Y. Dodge, ed.) 279–294. North-Holland, Amsterdam. [18] Liu, R. Y. and Singh, K. (1993). A quality index based on data depth and multivariate rank tests. J. Amer. Statist. Assoc. 88 252–260. · Zbl 0772.62031 · doi:10.2307/2290720 [19] Liu, R. Y., Parelius, J. M. and Singh, K. (1999). Multivariate analysis by data depth: Descriptive statistics, graphics and inference (with discussion). Ann. Statist. 27 783–858. · Zbl 0984.62037 · doi:10.1214/aos/1018031260 [20] Maronna, R. A. and Yohai, V. J. (1995). The behavior of the Stahel–Donoho robust multivariate estimator. J. Amer. Statist. Assoc. 90 330–341. · Zbl 0820.62050 · doi:10.2307/2291158 [21] Massé, J. C. (1999). Asymptotics for the Tukey depth. [22] Mosteller, F. and Turkey, J. W. (1977). Data Analysis and Regression : A Second Course in Statistics . Addison Wesley, Reading, MA. [23] Pollard, D. (1984). Convergence of Stochastic Processes . Springer, New York. · Zbl 0544.60045 [24] Pollard, D. (1990). Empirical Processes : Theory and Applications . IMS, Hayward, CA. · Zbl 0741.60001 [25] Rousseeuw, P. J. and Hubert, M. (1999). Regression depth (with discussion). J. Amer. Statist. Assoc. 94 388–433. · Zbl 1007.62060 [26] Rousseeuw, P. J. and Ruts, I. (1998). Constructing the bivariate Tukey median. Statist. Sinica 8 828–839. · Zbl 0905.62029 [27] Stahel, W. A. (1981). Robust estimation: Infinitesimal optimality and covariance matrix estimators. Ph.D. thesis, ETH, Zurich (in German). [28] Tukey, J. W. (1975). Mathematics and the picturing data. In Proceedings of the International Congress of Mathematicians 2 523–531. Canadian Mathematical Congress, Montreal. · Zbl 0347.62002 [29] Tyler, D. E. (1994). Finite sample breakdown points of projection based multivariate location and scatter statistics. Ann. Statist. 22 1024–1044. JSTOR: · Zbl 0815.62015 · doi:10.1214/aos/1176325510 [30] Zhang, J. (1991). Asymptotic theories for the robust PP estimators of the principal components and dispersion matrix. III. Bootstrap confidence sets, bootstrap tests. Systems Sci. Math. Sci. 4 289–301. · Zbl 0773.62042 [31] Zuo, Y. (2003). Projection-based depth functions and associated medians. Ann. Statist. 31 1460–1490. · Zbl 1046.62056 · doi:10.1214/aos/1065705115 [32] Zuo, Y. and Serfling, R. (2000a). General notions of statistical depth function. Ann. Statist. 28 461–482. · Zbl 1106.62334 · doi:10.1214/aos/1016218226 [33] Zuo, Y. and Serfling, R. (2000b). Structural properties and convergence results for contours of sample statistical depth functions. Ann. Statist. 28 483–499. · Zbl 1105.62343 · doi:10.1214/aos/1016218227 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.