zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Asymptotics for Lasso-type estimators. (English) Zbl 1105.62357
Summary: We consider the asymptotic behavior ofregression estimators that minimize the residual sum of squares plus a penalty proportional to $\sum\vert \beta_j\vert^{\gamma}$, for some $\gamma>0$. These estimators include the Lasso as a special case when $\gamma=1$. Under appropriate conditions, we show that the limiting distributions can have positive probability mass at 0 when the true value of the parameter is 0. We also consider asymptotics for “nearly singular” designs.

62J05Linear regression
62E20Asymptotic distribution theory in statistics
62J07Ridge regression; shrinkage estimators
Full Text: DOI
[1] Anderson, P. K. and Gill, R. D. (1982). Cox’s regression model for counting processes: a large sample study. Ann. Statist. 10 1100-1120. · Zbl 0526.62026 · doi:10.1214/aos/1176345976
[2] Besag, J. (1986). On the statistical analysis ofdirty pictures (with discussion). J. Roy. Statist. Soc. Ser. B 48 259-302. JSTOR: · Zbl 0609.62150 · http://links.jstor.org/sici?sici=0035-9246%281986%2948%3A3%3C259%3AOTSAOD%3E2.0.CO%3B2-%23&origin=euclid
[3] Chen, S. S., Donoho, D. L. and Saunders, M. A. (1999). Atomic decomposition by basis pursuit. SIAM J. Scientific Computing 20 33-61. · Zbl 0919.94002 · doi:10.1137/S1064827596304010
[4] Fan, J. and Li, R. (1999). Variable selection via penalized likelihood. Unpublished manuscript.
[5] Fiacco, A. V. and McCormick, G. P. (1990). Nonlinear Programming: Sequential Unconstrained Minimization Techniques. SIAM, Philadelphia. · Zbl 0713.90043
[6] Frank, I. E. and Friedman, J. H. (1993). A statistical view ofsome chemometrics regression tools (with discussion). Technometrics 35 109-148. · Zbl 0775.62288 · doi:10.2307/1269656
[7] Fu, W. J. (1998). Penalized regressions: the Bridge versus the Lasso. J. Comput. Graph. Statist. 7 397-416. JSTOR: · doi:10.2307/1390712 · http://links.jstor.org/sici?sici=1061-8600%28199809%297%3A3%3C397%3APRTBVT%3E2.0.CO%3B2-1&origin=euclid
[8] Fu, W. J. (1999). Estimating the effective trends in age-period-cohort studies. Unpublished manuscript.
[9] Geyer, C. J. (1994). On the asymptotics ofconstrained M-estimation. Ann. Statist. 22 1993-2010. · Zbl 0829.62029 · doi:10.1214/aos/1176325768
[10] Geyer, C. J. (1996). On the asymptotics ofconvex stochastic optimization. Unpublished manuscript.
[11] Kim, J. and Pollard, D. (1990). Cube root asymptotics. Ann. Statistics 18 191-219. · Zbl 0703.62063 · doi:10.1214/aos/1176347498
[12] Kupper, L. L., Janis, J. M., Karmous, A. and Greenberg, B. G. (1985). Statistical age-periodcohort analysis: a review and critique. J. Chronic Disease 38 811-830.
[13] Linhart, H. and Zucchini, W. (1986). Model Selection. Wiley, New York. · Zbl 0665.62003
[14] Osborne, M. R., Presnell, B. and Turlach, B. A. (1998). On the Lasso and its dual. Research Report 98/1, Dept. Statistics, Univ. Adelaide.
[15] Pflug, G. Ch. (1995). Asymptotic stochastic programs. Math. Oper. Res. 20 769-789. JSTOR: · Zbl 0847.90107 · doi:10.1287/moor.20.4.769 · http://links.jstor.org/sici?sici=0364-765X%28199511%2920%3A4%3C769%3AASP%3E2.0.CO%3B2-T&origin=euclid
[16] Pollard, D. (1991). Asymptotics for least absolute deviation regression estimators. Econometric Theory 7 186-199. JSTOR: · doi:10.1017/S0266466600004394 · http://links.jstor.org/sici?sici=0266-4666%28199106%297%3A2%3C186%3AAFLADR%3E2.0.CO%3B2-6&origin=euclid
[17] Sardy, S., Bruce, A. G. and Tseng, P. (1998). Block coordinate relaxation methods for nonparametric signal denoising with wavelet dictionaries. Technical Report, Dept. Mathematics, EPFL, Lausanne.
[18] Srivastava, M. S. (1971). On fixed width confidence bounds for regression parameters. Ann. Math. Statist. 42 1403-1411. · Zbl 0224.62034 · doi:10.1214/aoms/1177693251
[19] Tibshirani, R. (1996). Regression shrinkage and selection via the Lasso. J. Roy. Statist. Soc. Ser. B 58 267-288. JSTOR: · Zbl 0850.62538 · http://links.jstor.org/sici?sici=0035-9246%281996%2958%3A1%3C267%3ARSASVT%3E2.0.CO%3B2-G&origin=euclid
[20] van der Vaart, A. W. and Wellner, J. A. (1996). Weak Convergence and Empirical Processes with Applications to Statistics. Springer, New York. · Zbl 0862.60002