zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Smoothing spline ANOVA models for large data sets with Bernoulli observations and the randomized GACV. (English) Zbl 1105.62358
Summary: We propose the randomized Generalized Approximate Cross Validation (ranGACV) method for choosing multiple smoothing parameters in penalized likelihood estimates for Bernoulli data. The method is intended for application with penalized likelihood smoothing spline ANOVA models. In addition we propose a class of approximate numerical methods for solving the penalized likelihood variational problem which, in conjunction with the ranGACV method allows the application of smoothing spline ANOVA models with Bernoulli data to much larger data sets than previously possible. These methods are based on choosing an approximating subset of the natural (representer) basis functions for the variational problem. Simulation studies with synthetic data, including synthetic data mimicking demographic risk factor data sets is used to examine the properties of the method and to compare the approach with the GRKPACK code of Wang (1997). Bayesian “confidence intervals” are obtained for the fits and are shown in the simulation studies to have the “across the function” property usually claimed for these confidence intervals. Finally the method is applied to an observational data set from the Beaver Dam Eye study, with scientifically interesting results.

MSC:
62J10Analysis of variance and covariance
62G08Nonparametric regression
62G15Nonparametric tolerance and confidence regions
Software:
gss; SAS
WorldCat.org
Full Text: DOI
References:
[1] Bowman, K., Sacks, J. and Chang, Y. (1993). Design and analysis of numerical experiments. J. Atmos. Sci. 50 1267-1278.
[2] Brumback, B. and Rice, J. (1998). Smoothing spline models for the analysis of nested and crossed samples of curves. J. Amer. Statist. Assoc. 93 961-991. JSTOR: · Zbl 1064.62515 · doi:10.2307/2669837 · http://links.jstor.org/sici?sici=0162-1459%28199809%2993%3A443%3C961%3ASSMFTA%3E2.0.CO%3B2-O&origin=euclid
[3] Craven, P. and Wahba, G. (1979). Smoothing noisy data with spline functions: estimating the correct degree of smoothing by the method of generalized cross-validation. Numer. Math. 31 377-403. · Zbl 0377.65007 · doi:10.1007/BF01404567 · eudml:132586
[4] Efron, B. (1986). How biased is the apparent error rate of a prediction rule? J. Amer. Statist. Assoc 81 461-470. JSTOR: · Zbl 0621.62073 · doi:10.2307/2289236 · http://links.jstor.org/sici?sici=0162-1459%28198606%2981%3A394%3C461%3AHBITAE%3E2.0.CO%3B2-T&origin=euclid
[5] Friedman, J. (1991). Multivariate adaptive regression splines. Ann. Statist 19 1-141. · Zbl 0765.62064 · doi:10.1214/aos/1176347963
[6] Gao, F. (1999). Penalized multivariate logistic regression with a large data set. Ph. D. dissertation, Dept. Statistics, Univ. Wisconsin-Madison.
[7] Girard, D. (1998). Asymptotic comparison of (partial) cross-validation, GCV and randomized GCV in nonparametric regression. Ann. Statist. 26 315-334. · Zbl 0932.62047 · doi:10.1214/aos/1030563988
[8] Gong, J., Wahba, G., Johnson, D. and Tribbia, J. (1998). Adaptive tuning of numerical weather prediction models: simultaneous estimation of weighting, smoothing and physical parameters. Monthly Weather Rev. 125 210-231.
[9] Gu, C. (1990). Adaptive spline smoothing in non-Gaussian regression models. J. Amer. Statist. Assoc. 85 801-807. JSTOR: · doi:10.2307/2290018 · http://links.jstor.org/sici?sici=0162-1459%28199009%2985%3A411%3C801%3AASSINR%3E2.0.CO%3B2-0&origin=euclid
[10] Gu, C. (1992). Penalized likelihood regression: a Bayesian analysis. Statist. Sinica 2 255-264. · Zbl 0822.62023
[11] Gu, C. (1998). Structural multivariate function estimation: Some automatic density and hazard estimates. Statist. Sinica 8 317-336. · Zbl 0896.62049
[12] Gu, C. and Wahba, G. (1993). Semiparametric analysis of variance with tensor product thin plate splines. J. Roy. Statist. Soc. Ser. B 55 353-368. JSTOR: · Zbl 0786.62048 · http://links.jstor.org/sici?sici=0035-9246%281993%2955%3A2%3C353%3ASAOVWT%3E2.0.CO%3B2-P&origin=euclid
[13] Hastie, T. and Tibshirani, R. (1990). Generalized Additive Models. Chapman and Hall, New York. · Zbl 0747.62061
[14] Hutchinson, M. (1984). A summary of some surface fitting and contouring programs for noisy data, Technical Report ACT 84/6, CSIRO Division of Mathematics and Statistics, Canberra, Australia.
[15] Kimeldorf, G. and Wahba, G. (1971). Some results on Tchebycheffian spline functions. J. Math. Anal. Appl. 33 82-95. · Zbl 0201.39702 · doi:10.1016/0022-247X(71)90184-3
[16] Klein, B. E. K., Klein, R., Jensen, S. and Ritter, L. (1994). Are sex hormones associated with age-related maculopathy in women? The Beaver Dam Eye Study. Trans. Amer. Ophth. Soc. 92 289-297.
[17] Klein, R., Klein, B. E. K. and Linton, K. (1992). Prevalence of age-related maculopathy: The Beaver Dam Eye Study. Ophthalmalogy 99 933-942.
[18] Klein, R., Klein, B. E. K., Jensen, S. and Meuer, S. (1997). The five-year incidence and progression of age-related maculopathy: The Beaver Dam eye study. Ophthalmology 104 7-21.
[19] Klein, R., Klein, B. E. K., Linton, K. and DeMets, D. (1991). The Beaver Dam eye study: Visual acuity. Ophthalmology 98 1310-1315.
[20] Klein, R., Klein, B. E. K., Moss, S. E., Davis, M. D. and DeMets, D. L. (1984). The Wisconsin Epidemiologic Study of Diabetic Retinopathy. II. Prevalence and risk of diabetic retinopathy when age at diagnosis is less than 30 years. Arch. Ophthalmology 102 520-526. Lin, X. (1998a). Smoothing spline analysis of variance for polychotomous response data. Ph.D. dissertation, Dept. Statistics, Univ. Wisconsin-Madison. Lin, Y. (1998b). Tensor product space ANOVA models. Ann. Statist. 28 734-755. Lin, Y. (1998c). Tensor product space ANOVA models in multivariate function estimation. Ph.D. dissertation, Univ. Pennsylvania, Philadelphia PA.
[21] Luo, Z. (1998). Backfitting in smoothing spline ANOVA. Ann. Statist. 26 1733-1759. · Zbl 0929.62043 · doi:10.1214/aos/1024691355
[22] Luo, Z. and Wahba, G. (1997). Hybrid adaptive splines. J. Amer. Statist. Assoc. 92 107-114. JSTOR: · Zbl 1090.62535 · doi:10.2307/2291454 · http://www.amstat.org/publications/jasa/index.cfm?fuseaction=luomar1997
[23] Mallows, C. (1973). Some comments on Cp. Technometrics 15 661-675. · Zbl 0269.62061 · doi:10.2307/1267380
[24] SAS Institute, Inc. (1989). SAS/STAT User’s Guide, Version 6, 4th ed. SAS Institute, Inc. Cary, NC.
[25] Nychka, D. (1988). Bayesian confidence intervals for smoothing splines. J. Amer. Statist. Assoc. 83 1134-1143. JSTOR: · doi:10.2307/2290146 · http://links.jstor.org/sici?sici=0162-1459%28198812%2983%3A404%3C1134%3ABCIFSS%3E2.0.CO%3B2-2&origin=euclid
[26] Press, W., Teukolsky, S., Vetterling, W. and Flannery, B. (1992). Numerical Recipes in Fortran 77: The Art of Scientific Computing. Cambridge Univ. Press. · Zbl 0778.65002
[27] Silverman, B. (1985). Some aspects of the spline smoothing approach to non-parametric regression curve fitting. J. Roy. Statist. Soc. Ser. B 47 1-52. JSTOR: · Zbl 0606.62038 · http://links.jstor.org/sici?sici=0035-9246%281985%2947%3A1%3C1%3ASAOTSS%3E2.0.CO%3B2-I&origin=euclid
[28] Verbyla, A., Cullis, B., Kenward, M. and Welham, S. (1997). The analysis of designed experiments and longitudinal data using smoothing splines. Technical Report 97/4, Dept. Statistics, Univ. Adelaide. · Zbl 0956.62062
[29] Wahba, G. (1983). Bayesian ”confidence intervals” for the cross-validated smoothing spline. J. Roy. Statist. Soc. Ser. B 45 133-150. JSTOR: · Zbl 0538.65006 · http://links.jstor.org/sici?sici=0035-9246%281983%2945%3A1%3C133%3AB%22IFTC%3E2.0.CO%3B2-B&origin=euclid
[30] Wahba, G. (1990). Spline Models for Observational Data. SIAM, Philadelphia. · Zbl 0813.62001
[31] Wahba, G., Gu, C., Wang, Y. and Chappell, R. (1995). Soft classification, a. k. a. risk estimation, via penalized log likelihood and smoothing spline analysis of variance. In The Mathematics of Generalization (D. Wolpert, ed.) 329-360. Addison-Wesley, Reading, MA. · Zbl 0861.68079
[32] Wahba, G., Wang, Y., Gu, C., Klein, R. and Klein, B. (1995). Smoothing spline ANOVA for exponential families, with application to the Wisconsin Epidemiological Study of Diabetic Retinopathy. Ann. Statist. 23 1865-1895. · Zbl 0854.62042 · doi:10.1214/aos/1034713638
[33] Wang, Y. (1995). GRKPACK: Fitting smoothing spline analysis of variance models to data from exponential families. Technical Report 942, Dept. Statistics, Univ. Wisconsin-Madison.
[34] Wang, Y. (1997). GRKPACK: Fitting smoothing spline analysis of variance models to data from exponential families. Comm. Statist. Simul. Comput. 26 765-782. · Zbl 0900.62383 · doi:10.1080/03610919708813408
[35] Wang, Y. (1998). Smoothing spline models with correlated random errors. J. Amer. Statist. Assoc. 93 341-348. · Zbl 1068.62512 · doi:10.2307/2669630
[36] Wang, Y. and Wahba, G. (1995). Bootstrap confidence intervals for smoothing splines and their comparison to Bayesian ”confidence intervals.” J. Statist. Comput. Simul. 51 263-279. · Zbl 0842.62036 · doi:10.1080/00949659508811637
[37] Wang, Y., Wahba, G., Gu, C., Klein, R. and Klein, B. (1997). Using smoothing spline ANOVA to examine the relation of risk factors to the incidence and progression of diabetic retinopathy. Statistics in Medicine 16 1357-1376.
[38] LIN, WAHBA, XIANG, GAO, KLEIN AND KLEIN Wong, W. (1992). Estimation of the loss of an estimate. Technical Report 356, Dept. Statistics, Univ. Chicago.
[39] Wood, S. and Kohn, R. (1998). A Bayesian aproach to robust binary nonparametric regression. J. Amer. Statist. Assoc. 93 203-213. Xiang, D. (1996), Model fitting and testing for non-Gaussian data with a large data set. Ph.D. dissertation, Univ. Wisconsin-Madison. · Zbl 0906.62037 · doi:10.2307/2669617
[40] Xiang, D. and Wahba, G. (1995). Testing the generalized linear model null hypothesis versus ”smooth” alternatives. Technical Report 953, Dept. Statistics, Univ. Wisconsin- Madison.
[41] Xiang, D. and Wahba, G. (1996). A generalized approximate cross validation for smoothing splines with non-Gaussian data. Statist. Sinica 6 675-692. · Zbl 0854.62044
[42] Xiang, D. and Wahba, G. (1997). Approximate smoothing spline methods for large data sets in the binary case. In Proceedings of the 1997 ASA Joint Statistical Meetings, Biometrics Section 94-98. Amer. Statist. Assoc., Alexandria, VA.
[43] Ye, J. (1998). On measuring and correcting the effects of data mining and model selection. J. Amer. Statist. Assoc. 93 120-131. Ye, J. and Wong, W. (1997a). Evaluation of highly complex modeling procedures with Binomial and Poisson data. Unpublished manuscript. Ye, J. and Wong, W. (1997b) Model uncertainty and correcting for selection bias. Unpublished manuscript. JSTOR: · Zbl 0920.62056 · doi:10.2307/2669609 · http://links.jstor.org/sici?sici=0162-1459%28199803%2993%3A441%3C120%3AOMACTE%3E2.0.CO%3B2-M&origin=euclid