×

Estimating the \(K\) function of a point process with an application to cosmology. (English) Zbl 1105.62371

Summary: Motivated by the study of an important data set for understanding the large-scale structure of the universe, this work considers the estimation of the reduced second-moment function, or \(K\) function, of a stationary point process on \(\mathbf R\) observed over a large number of segments of possibly varying lengths. Theory and simulation are used to compare the behavior of isotropic and rigid motion correction estimators and some modifications of these estimators. These results generally support the use of modified versions of the rigid motion correction. When applied to a catalog of astronomical objects known as absorbers, the proposed methods confirm results from earlier analyses of the absorber catalog showing clear evidence of clustering up to \(50 h^{-1}\) Mpc and marginal evidence for clustering of matter on spatial scales beyond \(100 h^{-1}\) Mpc, which is beyond the distance at which clustering of matter is now generally accepted to exist.

MSC:

62M09 Non-Markovian processes: estimation
62P35 Applications of statistics to physics
85A40 Astrophysical cosmology

Software:

bootlib; spatial

References:

[1] Baddeley, A. (1998). Spatial samplingand censoring. In Stochastic Geometry: Likelihood and Computation (O. E. Barndorff-Nielsen, W. S. Kendall and M. N. M. van Lieshout, eds.) Chap. 2. Chapman and Hall, London.
[2] Baddeley, A. and Gill, R. D. (1997). Kaplan-Meier estimators of distance distributions for spatial point processes. Ann. Statist. 25 263-292. · Zbl 0870.62028 · doi:10.1214/aos/1034276629
[3] Baddeley, A. J., Moyeed, R. A., Howard, C. V. and Boyde, A. (1993). Analysis of a threedimensional point pattern with replication. Appl. Statist. 42 641-668. JSTOR: · Zbl 0825.62476 · doi:10.2307/2986181
[4] Coleman, P. H. and Pietronero, L. (1992). The fractal structure of the universe. Phys. Rep. 213 311-389.
[5] Crotts, A. P. S., Melott, A. L. and York, D. G. (1985). QSO metal-line absorbers: the key to large-scale structure? Phys. Lett. B 155 251-254.
[6] Daley, D. J. and Vere-Jones, D. (1988). An Introduction to the Theory of Point Processes. Springer, New York. · Zbl 0657.60069
[7] Davis, M. and Peebles, P. J. E. (1983). A survey of galaxy redshifts. V. The two-point position and velocity correlations. Astrophys. J. 267 465-482.
[8] Davison, A. C. and Hinkley, D. V. (1997). Bootstrap Methods and Their Application. Cambridge Univ. Press. · Zbl 0886.62001
[9] Feller, W. (1971). An Introduction to Probability Theory and Its Applications 2. Wiley, New York. · Zbl 0219.60003
[10] Hamilton, A. J. S. (1993). Toward better ways to measure the galaxy correlation function. Astrophys. J. 417 19-35.
[11] Hansen, M. B., Gill, R. D. and Baddeley, A. J. (1996). Kaplan-Meier type estimators for linear contact distributions. Scand. J. Statist. 23 129-155. · Zbl 0854.62030
[12] Jing, Y. P. and Suto, Y. (1998). Confrontingcold dark matter cosmologies with strongclustering of Lyman break galaxies at z 3. Astrophys. J. 494 L5-L8.
[13] Landy, S. L. and Szalay, A. S. (1993). Bias and variance of angular correlation functions. Astrophys. J. 412 64-71.
[14] Lanzetta, K. M., Bowen, D. B., Tytler, D. and Webb, J. K. (1995). The gaseous extent of galaxies and the origin of Lyman-alpha absorption systems: a survey of galaxies in the fields of Hubble Space Telescope spectroscopic target QSOs. Astrophys. J. 442 538-568.
[15] Loveday, J., Maddox, S. J., Efstathiou, G. and Peterson, B. A. (1995). The Stromlo-APM redshift survey. II. Variation of galaxy clustering with morphology and luminosity. Astrophys. J. 442 457-468.
[16] Margon, B. (1999). The Sloan Digital Sky Survey. Philos. Trans. Roy. Soc. London Ser. A 357 93-103.
[17] Martínez, V. J. (1997). Recent advances in large-scale structure statistics. In Statistical Challenges in Modern Astronomy II (G. J. Babu and E. D. Feigelson, eds.) 153-166. Springer, New York.
[18] Ohser, J. (1983). On estimators for the reduced second moment measure of point process. Math. Oper. Statist. Ser. Statist. 14 63-71. · Zbl 0519.62072 · doi:10.1080/02331888308801687
[19] Ohser, J. and Stoyan, D. (1981). On the second-order and orientation analysis of planar stationary point processes. Biometrical J. 23 523-533. · Zbl 0494.60048 · doi:10.1002/bimj.4710230602
[20] Peebles, P. J. E. (1993). Principles of Physical Cosmology. Princeton Univ. Press.
[21] Picka, J. (1996). Variance-reducingmodifications for estimators of dependence in random sets. Ph.D. dissertation, Dept. Statistics, Univ. Chicago.
[22] Pons-Bordería, M.-J., Martínez, V. J., Stoyan, D., Stoyan, H. and Saar, E. (1999). Comparing estimators of the galaxy correlation function. Astrophys. J. 523 480-491.
[23] Quashnock, J. M. and Stein, M. L. (1999). A measure of clusteringof QSO heavy-element absorption-line systems. Astrophys. J. 515 506-511.
[24] Quashnock, J. M. and Vanden Berk, D. E. (1998). The form and evolution of the clusteringof QSO heavy-element absorption-line systems. Astrophys. J. 500 28-36.
[25] Quashnock, J. M., Vanden Berk, D. E. and York, D. G. (1996). High-redshift superclustering of quasi-stellar object absorption-line systems on 100 h-1 Mpc scales. Astrophys. J. 472 L69-L72.
[26] Ripley, B. D. (1976). The second-order analysis of stationary point processes. J. Appl. Probab. 13 255-266. JSTOR: · Zbl 0364.60087 · doi:10.2307/3212829
[27] Ripley, B. D. (1988). Statistical Inference for Spatial Processes. Cambridge Univ. Press. Steidel, C. C., Adelberger, K. L., Dickinson, M., Giavalisco, M., Pettini, M. and Kellogg, M. · Zbl 0716.62100
[28] . A large structure of galaxies at redshift z 3 and its cosmological implications. Astrophys. J. 492 428-438.
[29] Stein, M. L. (1993). Asymptotically optimal estimation for the reduced second moment measure of point processes. Biometrika 80 443-449. JSTOR: · Zbl 0779.62092 · doi:10.1093/biomet/80.2.443
[30] Stein, M. L. (1995). An approach to asymptotic inference for spatial point processes. Statist. Sinica 5 221-234. · Zbl 0824.62087
[31] Stoyan, D. and Stoyan, H. (2000). Improvingratio estimators of second order point process characteristics. Scand. J. Statist. 27 641-656. · Zbl 0963.62089 · doi:10.1111/1467-9469.00213
[32] Sylos Labini, F., Montuori, M. and Pietronero, L. (1998). Scale-invariance of galaxy clustering. Phys. Rep. 293 61-226.
[33] Vanden Berk, D. E., Quashnock, J. M., York, D. G., Yanny, B. (1996). An excess of C IV absorbers in luminous quasars: evidence for gravitational lensing? Astrophys. J. 469 78-83.
[34] York, D. G., Yanny, B., Crotts, A., Carilli, C., Garrison, E. and Matheson, L. (1991). An inhomogeneous reference catalogue of identified intervening heavy element systems in spectra of QSOs. Mon. Not. Roy. Astron. Soc 250 24-49.
[35] Zhang, Y., Meiksin, A., Anninos, P. and Norman, M. L. (1998). Physical properties of the Ly forest in cold dark matter cosmology. Astrophys. J. 495 63-79.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.