×

Two estimators of the mean of a counting process with panel count data. (English) Zbl 1105.62372

Summary: We study two estimators of the mean function of a counting process based on “panel count data”. The setting for “panel count data” is one in which \(n\) independent subjects, each with a counting process with common mean function, are observed at several possibly different times duringa study. Following a model proposed by Schick and Yu, we allow the number of observation times, and the observation times themselves, to be random variables. Our goal is to estimate the mean function of the counting process. We show that the estimator of the mean function proposed by Sun and Kalbfleisch can be viewed as a pseudo-maximum likelihood estimator when a non-homogeneous Poisson process model is assumed for the counting process. We establish consistency of both the nonparametric pseudo maximum likelihood estimator of Sun and Kalbfleisch and the full maximum likelihood estimator, even if the underlying counting process is not a Poisson process. We also derive the asymptotic distribution of both estimators at a fixed time \(t\), and compare the resulting theoretical relative efficiency with finite sample relative efficiency by way of a limited Monte-Carlo study.

MSC:

62M09 Non-Markovian processes: estimation
62G05 Nonparametric estimation
62G20 Asymptotic properties of nonparametric inference
PDF BibTeX XML Cite
Full Text: DOI Euclid

References:

[1] Andrews, D. F. and Herzberg, A. M. (1985). Data: A Collection of Problems from Many Fields for the Student and Research Worker. Springer, New York. · Zbl 0567.62002
[2] Barlow, R. E., Bartholomew, D. J., Bremner, J. M. and Brunk, H. D. (1972). Statistical Inference Under Order Restrictions. Wiley, New York. · Zbl 0246.62038
[3] Brunk, H. D. (1969). Estimation of isotonic regression. In Proceedings of the International Symposium on Nonparametric Techniques in Statistical Inference 177-195. Cambridge Univ. Press. · Zbl 0255.62022
[4] Byar, D. P., Blackard, C. and the VACURG. (1977). Comparisons of placebo, pyridoxine, and topical thiotepa in preventingrecurrence of stage I bladder cancer. Urology 10 556-561.
[5] Byar, D. P. (1980). The Veterans Administration study of chemoprophylaxis for recurrent stage I bladder tumors: comparisons of placebo, pyridoxine, and topical thiotepa. In Bladder Tumors and Other Topics in Urological Oncology (M. Pavone-Macaluso, P. H. Smith and F. Edsmyr, eds.) 363-370. Plenum, New York Diamond, I. D. and McDonald, J. W. (1992). Analysis of current status data. In Demographic Applications of Event History Data Analysis (J. Trussell, R. Hankinson and J. Tilton, eds.) 231-252. Clarendon Press, Oxford.
[6] Diamond, I. D., McDonald, J. W. and Shah, I. H. (1986). Proportional hazard models for current status data: Applications to the study of differentials in age at weaning in Pakistan. Demography 28 607-620.
[7] Dudley, R. M. (1998). Consistency of M-estimators and one-sided bracketing. In Proceedings of the First International Conference on High-Dimensional Probability (E. Eberlein, M. Hahn and M. Talagrand, eds.) 33-58. Birkhäuser, Basel. · Zbl 0948.62012
[8] Ferguson, T. (1996). A Course in Large Sample Theory. Chapman and Hall, London. · Zbl 0871.62002
[9] Finkelstein, D. M. and Wolf, R. A. (1985). A semiparametric model for regression analysis of interval-censored failure time data. Biometrics 41 933-945. JSTOR: · Zbl 0655.62101
[10] Finkelstein, D. M. (1986). A proportional hazard model for interval-censored failure time data. Biometrics 42 584-854. JSTOR: · Zbl 0618.62097
[11] Gaver, D. P. and O’Muircheartaigh, I. G. (1987). Robust empirical Bayes analysis of event rates. Technometrics 29 1-15. JSTOR: · Zbl 0611.62124
[12] Groeneboom, P. (1991). Nonparametric maximum likelihood estimators for interval censoring and deconvolution. Technical Report 378, Dept. Statistics, Stanford Univ.
[13] Groeneboom, P. (1996). Inverse problems in statistics. Proceedings of the St. Flour Summer School in Probability. Lecture Notes in Math. 1648 67-164. Springer, Berlin. · Zbl 0907.62042
[14] Groeneboom, P. and Wellner, J. (1992). Information Bounds and Nonparametric Maximum Likelihood Estimation. Birkhäuser, Basel. · Zbl 0757.62017
[15] Groeneboom, P. and Wellner, J. (2000). ComputingChernoff’s distribution. J. Comput. Graph. Statist. 9.
[16] Huang, J. (1996). Efficient estimation for the Cox model with interval censoring. Ann. Statist. 24 540-568. · Zbl 0859.62032
[17] Huang, J. and Wellner, J. A. (1995). Efficient estimation for the Cox model with case 2 interval censoring. Unpublished manuscript.
[18] Huber, P. J. (1967). The behavior of maximum likelihood estimates under non-standard conditions. Proc. Fifth Berkeley Symp. Math. Statist. Probab. 1 221-233. Univ. California Press, Berkeley. · Zbl 0212.21504
[19] Jongbloed, G. (1998). The iterative convex minorant algorithm for nonparametric estimation. J. Comput. Graph. Statist. 7 310-321. JSTOR:
[20] Kalbfleisch, J. D. and Lawless, J. F. (1985). The analysis of panel count data under a Markov assumption. J. Amer. Statist. Assoc. 80 863-871. JSTOR: · Zbl 0586.62136
[21] Le Cam, L. (1953). On some asymptotic properties of maximum likelihood estimates and related estimates. Univ. Calif. Publ. Statist. 1 277-330. · Zbl 0052.15404
[22] Schick, A. and Yu, Q. (2000). Consistency of the GMLE with mixed case interval-censored data. Scand. J. Statist. 27 45-55. · Zbl 0938.62109
[23] Sun, J. and Kalbfleisch, J. D. (1993). The analysis of current status data on point processes. J. Amer. Statist. Assoc. 88 1449-1454. JSTOR: · Zbl 0793.62067
[24] Sun, J. and Kalbfleisch, J. D. (1995). Estimation of the mean function of point processes based on panel count data. Statist. Sinica 5 279-290. · Zbl 0824.62081
[25] Thall, P. F. and Lachin, J. M. (1988). Analysis of recurrent events: Nonparametric methods for random-interval count data. J. Amer. Statist. Assoc. 83 339-347.
[26] Thall, P. F. (1988). Mixed Poisson likelihood regression models for longitudinal interval count data. Biometrics 44 197-209. JSTOR: · Zbl 0707.62222
[27] Van der Vaart, A. W. and Wellner, J. A. (1996). Weak Convergence and Empirical Processes with Applications to Statistics. Springer, New York. · Zbl 0862.60002
[28] Wald, A. (1949). Note on the consistency of the maximum likelihood estimator. Ann. Math. Statist. 20 595-601. · Zbl 0034.22902
[29] Wei, L. J., Lin, D. Y. and Weissfeld, L. (1989). Regression analysis of multivariate incomplete failure time data by modelingmarginal distributions. J. Amer. Statist. Assoc. 84 1065- 1073. JSTOR:
[30] Wellner, J. A. (1995). Interval censoring, case 2: Alternative hypotheses. In Analysis of Censored Data 272-291. IMS, Hayward, CA. · Zbl 0876.62044
[31] Wellner, J. A. and Zhan, Y. (1997). A hybrid algorithm for computation of the nonparametric maximum likelihood estimator from censored data. J. Amer. Statist. Assoc. 92 945-959 JSTOR: · Zbl 0889.62026
[32] Wellner, J. A. and Zhang, Y. (1998). Two estimators of the mean of a countingprocess with panel count data. Technical Report 341, Dept. Statistics, Univ. Washington. www.stat.washington.edu/www/research/reports/. URL:
[33] Zhang, Y. (1998). Estimation for countingprocesses based on incomplete data. Ph. D. dissertation, Univ. Washington.
[34] Zhang, Y. (1999). A semiparametric pseudolikelihood estimation for panel count data. Technical report, Univ. Central Florida.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.