zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On quantum team games. (English) Zbl 1105.81010
Summary: Recently, {\it Y. Liu} and {\it M. A. Simaan} [J. Optim. Theory Appl. 120, No. 1, 29--51 (2004; Zbl 1064.91025)] introduced convex static multi-team classical games. Here they are generalized to both nonconvex, dynamic and quantum games. Puu’s incomplete information dynamical systems are modified and applied to Cournot team game. The replicator dynamics of the quantum prisoner’s dilemma game is also studied.

81P68Quantum computation
91A06$n$-person games, $n>2$
91A35Decision theory for games
91A10Noncooperative games
Full Text: DOI
[1] Bischi, G. I. and Naimzada A. (1999). Global analysis of duopoly game with bounded rationality, Adv. Dyn. Game Appl. 5, 361. · Zbl 0957.91027
[2] Gibbons, R. (1992). A Primer in Game Theory, Simon and Schuster, New York. · Zbl 0759.90106
[3] Hofbauer, J. and Sigmund, K. (1998). Evolutionary Games and Population Dynamics, Cambridge University Press, UK. · Zbl 0914.90287
[4] Iqbal, A. and Noor, A. H. (2004). Equilibrium of replicator dynamics in quantum games, 2[q-phys 0106135].
[5] Li, H., Du, J. and Massar, S. (2002). Continuous variable quantum games, Physical Letter A 306, 73. · Zbl 1005.81011
[6] Liu, Y. and Simaan M. A. (2004). Noninferior nash strategies for multi-team systems, Journal of Optimization Theoratical and Application 120, 29--51. · Zbl 1064.91025 · doi:10.1023/B:JOTA.0000012731.59061.be
[7] Orlin Grabbe, J. (2005). An introduction to quantum game theory.
[8] Puu, T. (1991). Chaos in duopoly pricing, Chaos, Solitons and Fractals, 1, 573. · Zbl 0754.90015 · doi:10.1016/0960-0779(91)90045-B
[9] Puu, T. (1995). The chaotic monopolist, Chaos, Solitons and Fractals 5, 35. · Zbl 0829.90030 · doi:10.1016/0960-0779(94)00206-6