Gorenstein injective dimension for complexes and Iwanaga-Gorenstein rings. (English) Zbl 1106.13024

Motivated by the work of O. Veliche [Trans. Am. Math. Soc. 358, No. 3, 1257–1283 (2006; Zbl 1094.16007)], the author extends the concept of Gorenstein injective dimension to the setting of unbounded complexes over associative rings and presents some its applications. In particular, some new characterizations of Iwanaga-Gorenstein rings in terms of the class of complexes of finite Gorenstein injective dimension and also in terms of the interplay between same class and the class of complexes of finite projective Gorenstein dimension are provided.


13H10 Special types (Cohen-Macaulay, Gorenstein, Buchsbaum, etc.)
13D03 (Co)homology of commutative rings and algebras (e.g., Hochschild, André-Quillen, cyclic, dihedral, etc.)
13D05 Homological dimension and commutative rings
55N35 Other homology theories in algebraic topology


Zbl 1094.16007
Full Text: DOI


[1] DOI: 10.1090/S0002-9947-05-03749-9 · Zbl 1093.13010 · doi:10.1090/S0002-9947-05-03749-9
[2] Auslander M., Mem. Amer. Math. Soc. pp 94– (1969)
[3] DOI: 10.1016/0022-4049(91)90144-Q · Zbl 0737.16002 · doi:10.1016/0022-4049(91)90144-Q
[4] Avramov L. L., Differential graded homological algebra (2003)
[5] DOI: 10.1112/S0024611502013527 · Zbl 1047.16002 · doi:10.1112/S0024611502013527
[6] Brown K. S., Graduate Texts in Math 87 (1982)
[7] DOI: 10.1007/BFb0103980 · Zbl 0965.13010 · doi:10.1007/BFb0103980
[8] DOI: 10.1016/j.jalgebra.2005.12.007 · Zbl 1104.13008 · doi:10.1016/j.jalgebra.2005.12.007
[9] DOI: 10.1007/BF02572634 · Zbl 0845.16005 · doi:10.1007/BF02572634
[10] Enochs E. E., de Gruyter Expositions in Mathematics pp 30– (2000)
[11] DOI: 10.1090/S0002-9939-03-07466-5 · Zbl 1062.16008 · doi:10.1090/S0002-9939-03-07466-5
[12] DOI: 10.1515/FORUM.2006.013 · Zbl 1107.16010 · doi:10.1515/FORUM.2006.013
[13] DOI: 10.1112/jlms/s2-39.3.436 · Zbl 0642.16034 · doi:10.1112/jlms/s2-39.3.436
[14] Salce , L. ( 1979 ). Cotorsion theories for Abelian groups . Symposia Mathematica, Vol. XXIII (Conf. Abelian Groups and their Relationship to the Theory of Modules, INDAM, Rome, 1977) Academic Press, London, pp. 11 – 32 .
[15] DOI: 10.1090/S0002-9947-05-03771-2 · Zbl 1094.16007 · doi:10.1090/S0002-9947-05-03771-2
[16] Yassemi S., Math. Scand. 77 pp 161– (1995)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.