×

zbMATH — the first resource for mathematics

Weak*-convergence of Monge-Ampère measures. (English) Zbl 1106.32024
For an open set \(\varOmega\subset\mathbb C^n\), let \(\mathcal{E}_0(\varOmega)\) be the family of all bounded functions \(\psi\in\mathcal{PSH}(\varOmega)\) such that \(\lim_{z\to\xi}\psi(z)=0\), \(\xi\in\partial\varOmega\), and \(\int_\varOmega(dd^c\psi)^n<+\infty\). Let, further, \(\mathcal{F}(\varOmega)\) denote the family of all bounded functions \(\varphi\in\mathcal{PSH}(\varOmega)\) such that there exists a sequence \((\varphi_j)_{j=1}^\infty\subset\mathcal{E}_0(\varOmega)\) with \(\varphi_j\searrow\varphi\) and \(\sup_j\int_\varOmega(dd^c\varphi_j)^n<+\infty\). Finally, let \(\mathcal{E}(\varOmega)\) be the family of all functions \(u\) such that for every relatively compact open set \(\omega\Subset\varOmega\) there exists a \(u_\omega\in\mathcal{F}(\varOmega)\) such that \(u=u_\omega\) in \(\omega\).
The author shows that if \(\mathcal{F}(\varOmega)\ni u_j\overset{\text{weak}} \longrightarrow u\in\mathcal{F}(\varOmega)\) and \(\int_\varOmega v(dd^cu_j)^n\longrightarrow\int_\varOmega v(dd^cu)^n\) for a strictly plurisubharmonic function \(v\in\mathcal{E}_0(\varOmega)\), then \((dd^cu_j)^n\overset{\text{weak}^\ast}\longrightarrow(dd^cu)^n\). Using this result and a theorem by E. Poletsky [Trans. Am. Math. Soc. 355, 1579–1591 (2003; Zbl 1023.32020)], the author proves the following fundamental theorem. Let \(\varOmega\subset\mathbb C^n\) be strongly hyperconvex, \(u\in\mathcal{PSH}^-(\varOmega)\cap L^1(\varOmega)\). Then there exists a sequence \((g_j)_{j=1}^\infty\) of multipole Green functions such that \(g_j\overset{L^1}\longrightarrow u\). Moreover, if \(u\in\mathcal{E}\), then the sequence \((g_j)_{j=1}^\infty\) may be chosen so that \((dd^cg_j)^n\overset{\text{weak}^\ast}\longrightarrow(dd^cu)^n\).

MSC:
32U05 Plurisubharmonic functions and generalizations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Cegrell, U.: Discontinuité de l’opérateur de Monge-Ampère complexe. C. R. Acad. Sci. Paris Sér. I Math. 296, 869–871 (1983) · Zbl 0541.31008
[2] Cegrell, U: Pluricomplex energy. Acta Math. 180, 187–217 (1998) · Zbl 0926.32042 · doi:10.1007/BF02392899
[3] Cegrell, U: The general definition of the complex Monge-Ampère operator. Ann. Inst. Fourier (Grenoble) 54, 159–179 (2004) · Zbl 1065.32020
[4] Poletsky, E.A.: Approximation of plurisubharmonic functions by multipole Green functions. Trans. Amer. Math. Soc. 355, 1579–1591 (2003) · Zbl 1023.32020 · doi:10.1090/S0002-9947-02-03215-4
[5] Zaharyuta, V.P.: Spaces of analytic functions and maximal plurisubharmonic functions. Doc. Sci. Thesis, 1984
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.