zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Compacton-like wave and kink-like wave of GCH equation. (English) Zbl 1106.35065
Summary: We combine qualitative analysis with numerical exploration to study traveling waves of a generalized Camassa--Holm equation. Two new types of bounded traveling waves are found. One of them is called compacton-like wave because it is of some properties of compacton. Similarly, the other is called kink-like wave since it possesses some properties of kink. Their implicit expressions are obtained. For some concrete data, the diagrams of the implicit functions are displayed, and the numerical simulation is made. The results imply that our theoretical analysis is agreeable with the numerical simulation.

MSC:
35Q53KdV-like (Korteweg-de Vries) equations
35Q51Soliton-like equations
37K40Soliton theory, asymptotic behavior of solutions
35C07Traveling wave solutions of PDE
WorldCat.org
Full Text: DOI
References:
[1] Alber, M. S.; Camassa, R.; Holm, D. D.; Marsden, J. E.: The geometry of peaked solitons and billiard solutions of a class of integrable pdes. Lett. math. Phys. 32, No. 2, 137-151 (1994) · Zbl 0808.35124
[2] Andronov, A. A.; Leontovich, E. A.; Gordon, I. I.; Maier, A. G.: Theory of bifurcations of dynamic systems on a plane. (1973) · Zbl 0282.34022
[3] Boyd, J. P.: Peakons and coshoidal wavestravelling wave solutions of the Camassa -- Holm equation. Appl. math. Comput. 81, No. 2 -- 3, 173-187 (1997) · Zbl 0871.35089
[4] Byrd, P. F.; Rriedman, M. D.: Handbook of elliptic integrals for engineers and scientists. (1971)
[5] Camassa, R.; Holm, D. D.: An integrable shallow water equation with peaked solitons. Phys. rev. Lett. 71, No. 11, 1661-1664 (1993) · Zbl 0972.35521
[6] Constantin, A.: Existence of permanent and breaking waves for a shallow water equationa geometric approach. Ann. inst. Fourier (Grenoble) 50, 321-362 (2000) · Zbl 0944.35062
[7] Constantin, A.: On the scattering problem for the Camassa -- Holm equation. Proc. R. Soc. London A 457, 953-970 (2001) · Zbl 0999.35065
[8] Constantin, A.; Escher, J.: Wave breaking for nonlinear nonlocal shallow water equations. Acta Mathematica 181, 229-243 (1998) · Zbl 0923.76025
[9] Constantin, A.; Kolev, B.: Geodesic how on the diffeomorphism group of the circle. Comment. math. Helv. 78, 787-804 (2003) · Zbl 1037.37032
[10] Constantin, A.; Mckean, H. P.: A shallow water equation on the circle. Comm. pure appl. Math. 52, 949-982 (1999) · Zbl 0940.35177
[11] Constantin, A.; Molinet, L.: Global weak solutions for a shallow water equation. Comm. math. Phys. 211, 45-61 (2000) · Zbl 1002.35101
[12] Constantin, A.; Strauss, W. A.: Stability of peakons. Comm. pure appl. Math. 53, 603-610 (2000) · Zbl 1049.35149
[13] Constantin, A.; Strauss, W. A.: Stability of the class of solitary waves in compressible elastic rods. Phys. lett. A 270, 140-148 (2000) · Zbl 1115.74339
[14] Constantin, A.; Strauss, W. A.: Stability of the cammassa -- Holm solitons. J. nonlinear sci. 12, 415-422 (2002) · Zbl 1022.35053
[15] Cooper, F.; Shepard, H.: Solitons in the Camassa -- Holm shallow water equation. Phys. lett. A 194, No. 4, 246-250 (1994) · Zbl 0961.76512
[16] Dai, H. H.: Model equations for nonlinear dispersive waves in a compressible mooney -- rivlin rod. Acta mech. 127, 193-207 (1998) · Zbl 0910.73036
[17] Dai, H. H.; Huo, Y.: Solitary shock waves and other travelling waves in a general compressible hyperelastic rod. R. soc. 456, 331-363 (2000) · Zbl 1004.74046
[18] Dey, B.: Domain wall solutions of KdV like equations with higher order nonlinearity. J. phys. A: math. Gen. 19, L9-L12 (1986) · Zbl 0624.35070
[19] Dullin, H. R.; Gottwald, G. A.; Holm, D. D.: An integrable shallow water equation with linear and nonlinear dispersion. Phys. rev. Lett. 87, No. 19, 4501-4504 (2001)
[20] Dullin, H. R.; Gottwald, G. A.; Holm, D. D.: On asymptotically equivalent shallow water wave equations. Phys. D 190, 1-14 (2004) · Zbl 1050.76008
[21] Fisher, M.; Schiff, J.: The Camassa -- Holm equationconserved quantities and the initial value problem. Phys. lett. A 259, No. 5, 371-376 (1999) · Zbl 0936.35166
[22] Garbo, A. D.; Barbi, M.; Chillemi, S.; Fronzoni, L.: Dynamical properties of a kink of the sine-Gordon equation trapped in a potential well. Nonlinear anal. 47, No. 9, 5967-5978 (2001) · Zbl 1042.78509
[23] Guo, B. L.; Liu, Z. R.: Peaked wave solutions of CH-$\gamma $ equation. Sci. China (Series A) 33, No. 4, 325-337 (2003) · Zbl 1089.35521
[24] Hone, A. N. W.: The associated Camassa -- Holm equation and the KdV equation. J. phys. A: math. Gen. 32, L307-L314 (1999) · Zbl 0989.37065
[25] Johnson, R. S.; Holm, Camassa --: Korteweg-de Vries and related models for water waves. J. fluid mech. 455, 63-82 (2002)
[26] Johnson, R. S.: On solutions of the Camassa -- Holm equation. Proc. R. Soc. London A 459, 1687-1708 (2003) · Zbl 1039.76006
[27] Kalisch, H.: Stability of solitary waves for a nonlinearly dispersive equation. Discrete cont. Dyn. syst. 10, No. 3, 709-717 (2004) · Zbl 1059.35012
[28] Kalisch, H.; Lenells, J.: Numerical study of traveling-wave solutions for the Camassa -- Holm equation. Chaos, solitons fractals 25, 287-298 (2005) · Zbl 1136.35448
[29] Kraenkel, R. A.; Zenchuk, A. I.: Modified Korteweg -- de Vries hierarchy with hodograph transformationcamassa -- Holm and harry -- dym hierarchies. Math. comput. Simul. 55, 483-491 (2001) · Zbl 0981.35071
[30] J. Lenells, Traveling wave solutions of the Camassa -- Holm equation, J. Differential Equations, in press. · Zbl 1082.35127
[31] Lenells, J.: The scattering approach for the Camassa -- Holm equation. J. nonlinear math. Phys. 9, No. 4, 389-393 (2002) · Zbl 1014.35082
[32] Li, Y. A.; Olver, P. J.: Convergence of solitary-wave solutions in a perturbed bi-Hamiltonian dynamical system. I. compactons and peakons. Discrete cont. Dyn. syst. 3, 419-432 (1997) · Zbl 0949.35118
[33] Li, Y. A.; Olver, P. J.: Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation. J. differential equations 162, 27-63 (2000) · Zbl 0958.35119
[34] Liu, Z. R.; Qian, T. F.: Peakons and their bifurcation in a generalized Camassa -- Holm equation. Int. J. Bifurcation chaos 11, No. 3, 781-792 (2001) · Zbl 1090.37554
[35] Liu, Z. R.; Qian, T. F.: Peakons of the Camassa -- Holm equation. Appl. math. Modeling 26, 473-480 (2002) · Zbl 1018.35061
[36] Liu, Z. R.; Wang, R. Q.; Jing, Z. J.: Peaked wave solutions of Camassa -- Holm equation. Chaos, solitons and fractals 19, 77-92 (2004) · Zbl 1068.35136
[37] Lopes, O.: Stability of peakons for the generalized Camassa -- Holm equation. Elec. J. Differential equations 2002, No. 5, 1-12 (2002) · Zbl 1088.35060
[38] Mckean, H. P.: Fredholm determinants and the Camassa -- Holm hierarchy. Comm. pure appl. Math. 56, 638-680 (2003) · Zbl 1047.37047
[39] Olver, P. J.; Rosenau, P.: Tri-Hamiltonian duality between solitons and solitary-wave solutions having compact support. Phys. rev. E 53, 1900-1906 (1996)
[40] Qian, T. F.; Tang, M. Y.: Peakons and periodic cusp waves in a generalized Camassa -- Holm equation. Chaos, solitons fractals 12, 1347-1360 (2001) · Zbl 1021.35086
[41] Reyes, E. G.: Geometric integrability of the Camassa -- Holm equation. Lett. math. Phys. 59, No. 2, 117-131 (2002) · Zbl 0997.35081
[42] Reyes, E. G.: The soliton content of the Camassa -- Holm and Hunter -- Saxton equation. Proc. inst. Math. NAS ukraine 43, No. 1, 201-208 (2002) · Zbl 1034.37037
[43] Rosenau, P.: Nonlinear dispersion and compact structures. Phys. rev. Lett. 73, No. 13, 1737-1741 (1994) · Zbl 0953.35501
[44] Rosenau, P.: On solitons, compactons, and Lagrange maps. Phys. lett. A 211, 265-275 (1996) · Zbl 1059.35524
[45] Rosenau, P.: Compact and noncompact dispersive patterns. Phys. lett. A 275, 193-203 (2000) · Zbl 1115.35365
[46] Rosenau, P.; Hyman, J. M.: Compactons: solitons with finite wavelength. Phys. rev. Lett. 70, No. 5, 564-567 (1993) · Zbl 0952.35502
[47] Tang, M. Y.; Yang, C. X.: Extension on peaked wave solutions of CH-$\gamma $ equation. Chaos, solitons fractals 20, 815-825 (2004) · Zbl 1049.35153
[48] Wahlen, E.: A blow-up result for the periodic Camassa -- Holm equation. Arch. math. 84, 334-340 (2005) · Zbl 1126.35056
[49] Wazwaz, A. M.: Solutions of compact and noncompact structures for nonlinear Klein-Gordon type. Appl. math. Comput. 134, 487-500 (2003) · Zbl 1027.35119
[50] Yin, Z. Y.: On the Cauchy problem for a nonlinearly dispersive wave equation. J. nonlinear math. Phys. 10, No. 1, 10-15 (2003) · Zbl 1021.35100