×

Global well-posedness of the Cauchy problem of the fifth-order shallow water equation. (English) Zbl 1106.35068

Summary: By using the \(I\)-method, we prove that the Cauchy problem of the fifth-order shallow water equation \[ \partial_tu- \partial_x^2 \partial_tu+ \partial_x^3u+ 3u\partial_xu- 2\partial_xu \partial_x^2u- u\partial_x^3u- \partial_x^5u=0 \] is globally well-posed in the Sobolev space \(H^s(\mathbb R)\) provided \(s>(5\sqrt{7}-10)/4\).

MSC:

35Q35 PDEs in connection with fluid mechanics
76B15 Water waves, gravity waves; dispersion and scattering, nonlinear interaction
35Q53 KdV equations (Korteweg-de Vries equations)
35G25 Initial value problems for nonlinear higher-order PDEs
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Bourgain, J., Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, part I: Schrödinger equation, part II: The KdV equation, Geom. Funct. Anal., 3, 107-156 (1993), 209-262 · Zbl 0787.35097
[4] Camassa, R.; Holm, D., An integrable shallow water equation with peaked solutions, Phys. Rev. Lett., 71, 1661-1664 (1993) · Zbl 0972.35521
[5] Colliander, J.; Kell, M.; Stafillani, G.; Takaoka, H.; Tao, T., Global well-posedness for Schrödinger equations with derivative, SIAM J. Math. Anal., 33, 649-666 (2001)
[6] Colliander, J.; Kell, M.; Stafillani, G.; Takaoka, H.; Tao, T., Global well-posedness for the KdV in Sobolev spaces of negative indices, Electronic J. Differential Equations, 26, 1-7 (2001)
[7] Colliander, J.; Kell, M.; Stafillani, G.; Takaoka, H.; Tao, T., Almost conservation laws and global rough solutions to a nonlinear Schrödinger equation, Math. Res. Lett., 9, 659-682 (2002) · Zbl 1152.35491
[8] Colliander, J.; Kell, M.; Stafillani, G.; Takaoka, H.; Tao, T., Sharp global well-posedness for KdV and modified KdV on R and T, J. Amer. Math. Soc., 16, 705-749 (2003) · Zbl 1025.35025
[9] Constantin, A.; Escher, J., Wave breaking for nonlinear nonlocal shallow water equations, Acta Math., 181, 229-243 (1998) · Zbl 0923.76025
[10] Constantin, A.; Escher, J., Global existence and blow-up for a shallow water equation, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 26, 303-328 (1998) · Zbl 0918.35005
[11] Constantin, A.; Escher, J., Well-posedness, global existence and blow-up phenomena for a periodic quasi-linear hyperbolic equation, Comm. Pure Appl. Math., 51, 475-504 (1998) · Zbl 0934.35153
[12] Constantin, A.; Escher, J., Global weak solutions for a shallow water equation, Indiana Univ. Math. J., 47, 1525-1545 (1998) · Zbl 0930.35133
[13] Constantin, A.; Molinet, L., Global weak solutions for a shallow water equation, Comm. Math. Phys., 211, 45-61 (2000) · Zbl 1002.35101
[14] Fokas, A.; Fuchssteiner, B., Symplectic structures, their Bäklund transformations and hereditary symmetries, Phys. Rev. Lett., 71, 47-66 (1981) · Zbl 1194.37114
[16] Grünrock, A., An improved local well-posedness result for the modified KdV equation, Int. Math. Res. Not., 61, 3287-3308 (2004) · Zbl 1072.35161
[17] Himonas, A. A.; Misiolek, G., The Cauchy problem for a shallow water type equation, Comm. Partial Differential Equations, 23, 123-139 (1998) · Zbl 0895.35021
[18] Himonas, A. A.; Misiolek, G., Well-posedness of the Cauchy problem for a shallow water equation on the circle, J. Differential Equations, 161, 479-495 (2000) · Zbl 0945.35073
[19] Himonas, A. A.; Misiolek, G., The initial value problem for a fifth order shallow water, (Analysis, Geometry, Number Theory: The Mathematics of Leon Ehrenpreis. Analysis, Geometry, Number Theory: The Mathematics of Leon Ehrenpreis, Contemp. Math., vol. 251 (2000), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 309-320 · Zbl 0955.35065
[21] Kenig, C. E.; Ponce, G.; Vega, L., The Cauchy problem for the Korteweg-de Vries equation in Sobolev spaces of negative indices, Duke Math. J., 71, 1-21 (1993) · Zbl 0787.35090
[22] Kenig, C. E.; Ponce, G.; Vega, L., Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle, Comm. Pure Appl. Math., XLVI, 527-620 (1993) · Zbl 0808.35128
[23] Kenig, C. E.; Ponce, G.; Vega, L., A bilinear estimate with applications to the KdV equation, J. Amer. Math. Soc., 9, 573-603 (1996) · Zbl 0848.35114
[24] Li, Y.; Olver, P., Well-posedness and blow-up solutions for an integrable nonlinearity dispersive model wave equation, J. Differential Equations, 162, 27-63 (2000) · Zbl 0958.35119
[25] Liu, X.; Jin, Y., The Cauchy problem of a shallow water equation, Acta Math. Sin. (Engl. Ser.), 30, 1-16 (2004)
[26] Misiolek, G., Classical solutions of the periodic Camassa-Holm equation, Geom. Funct. Anal., 12, 1080-1104 (2002) · Zbl 1158.37311
[27] Rodriguez-Blanco, G., On the Cauchy problem for the Camassa-Holm equation, Nonlinear Anal., 46, 309-327 (2001) · Zbl 0980.35150
[28] Xin, Z.; Zhang, P., On the weak solutions to a shallow water equation, Comm. Pure Appl. Math., 53, 1411-1433 (2000) · Zbl 1048.35092
[29] Xin, Z.; Zhang, P., On the uniqueness and large time behavior of the weak solutions to a shallow water equation, Comm. Partial Differential Equations, 27, 1815-1844 (2002) · Zbl 1034.35115
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.