zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Global well-posedness of the Cauchy problem of the fifth-order shallow water equation. (English) Zbl 1106.35068
Summary: By using the $I$-method, we prove that the Cauchy problem of the fifth-order shallow water equation $$\partial_tu- \partial_x^2 \partial_tu+ \partial_x^3u+ 3u\partial_xu- 2\partial_xu \partial_x^2u- u\partial_x^3u- \partial_x^5u=0$$ is globally well-posed in the Sobolev space $H^s(\Bbb R)$ provided $s>(5\sqrt{7}-10)/4$.

MSC:
35Q35PDEs in connection with fluid mechanics
76B15Water waves, gravity waves; dispersion and scattering, nonlinear interaction
35Q53KdV-like (Korteweg-de Vries) equations
35G25Initial value problems for nonlinear higher-order PDE
WorldCat.org
Full Text: DOI
References:
[1] Bourgain, J.: Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, part I: Schrödinger equation, part II: The KdV equation. Geom. funct. Anal. 3, 107-156 (1993) · Zbl 0787.35097
[2] P.J. Byers, The initial value problem for a KdV-type equation and related bilinear estimate, Dissertation, University of Notre Dame, 2003
[3] P.J. Byers, Existence time for the Camassa -- Holm equation and the critical Sobolev index, preprint · Zbl 1102.35032
[4] Camassa, R.; Holm, D.: An integrable shallow water equation with peaked solutions. Phys. rev. Lett. 71, 1661-1664 (1993) · Zbl 0972.35521
[5] Colliander, J.; Kell, M.; Stafillani, G.; Takaoka, H.; Tao, T.: Global well-posedness for Schrödinger equations with derivative. SIAM J. Math. anal. 33, 649-666 (2001)
[6] Colliander, J.; Kell, M.; Stafillani, G.; Takaoka, H.; Tao, T.: Global well-posedness for the KdV in Sobolev spaces of negative indices. Electronic J. Differential equations 26, 1-7 (2001)
[7] Colliander, J.; Kell, M.; Stafillani, G.; Takaoka, H.; Tao, T.: Almost conservation laws and global rough solutions to a nonlinear Schrödinger equation. Math. res. Lett. 9, 659-682 (2002) · Zbl 1152.35491
[8] Colliander, J.; Kell, M.; Stafillani, G.; Takaoka, H.; Tao, T.: Sharp global well-posedness for KdV and modified KdV on R and T. J. amer. Math. soc. 16, 705-749 (2003) · Zbl 1025.35025
[9] Constantin, A.; Escher, J.: Wave breaking for nonlinear nonlocal shallow water equations. Acta math. 181, 229-243 (1998) · Zbl 0923.76025
[10] Constantin, A.; Escher, J.: Global existence and blow-up for a shallow water equation. Ann. sc. Norm. super. Pisa cl. Sci. (5) 26, 303-328 (1998) · Zbl 0918.35005
[11] Constantin, A.; Escher, J.: Well-posedness, global existence and blow-up phenomena for a periodic quasi-linear hyperbolic equation. Comm. pure appl. Math. 51, 475-504 (1998) · Zbl 0934.35153
[12] Constantin, A.; Escher, J.: Global weak solutions for a shallow water equation. Indiana univ. Math. J. 47, 1525-1545 (1998) · Zbl 0930.35133
[13] Constantin, A.; Molinet, L.: Global weak solutions for a shallow water equation. Comm. math. Phys. 211, 45-61 (2000) · Zbl 1002.35101
[14] Fokas, A.; Fuchssteiner, B.: Symplectic structures, their bäklund transformations and hereditary symmetries. Phys. rev. Lett. 71, 47-66 (1981) · Zbl 1194.37114
[15] A. Grünrock, New applications of the Fourier restriction norm method to wellposedness problems for nonlinear evolution equations, Dissertation, University of Wuppertal, 2002
[16] Grünrock, A.: An improved local well-posedness result for the modified KdV equation. Int. math. Res. not. 61, 3287-3308 (2004) · Zbl 1072.35161
[17] Himonas, A. A.; Misiolek, G.: The Cauchy problem for a shallow water type equation. Comm. partial differential equations 23, 123-139 (1998) · Zbl 0895.35021
[18] Himonas, A. A.; Misiolek, G.: Well-posedness of the Cauchy problem for a shallow water equation on the circle. J. differential equations 161, 479-495 (2000) · Zbl 0945.35073
[19] Himonas, A. A.; Misiolek, G.: The initial value problem for a fifth order shallow water. Contemp. math. 251, 309-320 (2000) · Zbl 0955.35065
[20] D. Holm, S. Kouranbaeva, J. Marsden, T. Ratiu, S. Shkoller, A nonlinear analysis of the averaged Euler equations, preprint, 1998
[21] Kenig, C. E.; Ponce, G.; Vega, L.: The Cauchy problem for the Korteweg -- de Vries equation in Sobolev spaces of negative indices. Duke math. J. 71, 1-21 (1993) · Zbl 0787.35090
[22] Kenig, C. E.; Ponce, G.; Vega, L.: Well-posedness and scattering results for the generalized Korteweg -- de Vries equation via the contraction principle. Comm. pure appl. Math. 46, 527-620 (1993) · Zbl 0808.35128
[23] Kenig, C. E.; Ponce, G.; Vega, L.: A bilinear estimate with applications to the KdV equation. J. amer. Math. soc. 9, 573-603 (1996) · Zbl 0848.35114
[24] Li, Y.; Olver, P.: Well-posedness and blow-up solutions for an integrable nonlinearity dispersive model wave equation. J. differential equations 162, 27-63 (2000) · Zbl 0958.35119
[25] Liu, X.; Jin, Y.: The Cauchy problem of a shallow water equation. Acta math. Sin. (Engl. Ser.) 30, 1-16 (2004)
[26] Misiolek, G.: Classical solutions of the periodic Camassa -- Holm equation. Geom. funct. Anal. 12, 1080-1104 (2002) · Zbl 1158.37311
[27] Rodriguez-Blanco, G.: On the Cauchy problem for the Camassa -- Holm equation. Nonlinear anal. 46, 309-327 (2001) · Zbl 0980.35150
[28] Xin, Z.; Zhang, P.: On the weak solutions to a shallow water equation. Comm. pure appl. Math. 53, 1411-1433 (2000) · Zbl 1048.35092
[29] Xin, Z.; Zhang, P.: On the uniqueness and large time behavior of the weak solutions to a shallow water equation. Comm. partial differential equations 27, 1815-1844 (2002) · Zbl 1034.35115