×

zbMATH — the first resource for mathematics

Distortion in transformation groups (with an appendix by Yves de Cornulier). (English) Zbl 1106.37017
Summary: We exhibit rigid rotations of spheres as distortion elements in groups of diffeomorphisms, thereby answering a question of J. Franks and M. Handel [Duke Math. J. 131, No. 3, 441–468 (2006; Zbl 1088.37009)]. We also show that every homeomorphism of a sphere is, in a suitable sense, as distorted as possible in the group Homeo\((S^n)\), thought of as a discrete group.
The appendix by Y. de Cornulier shows that Homeo\((S^n)\) has the strong boundedness property, recently introduced by G. Bergman [Bull. Lond. Math. Soc. 38, No. 3, 429-440 (2006; Zbl 1103.20003 )]. This means that every action of the discrete group Homeo\((S^n)\) on a metric space by isometries has bounded orbits.

MSC:
37C85 Dynamics induced by group actions other than \(\mathbb{Z}\) and \(\mathbb{R}\), and \(\mathbb{C}\)
57M60 Group actions on manifolds and cell complexes in low dimensions
57S25 Groups acting on specific manifolds
37C05 Dynamical systems involving smooth mappings and diffeomorphisms
22F05 General theory of group and pseudogroup actions
PDF BibTeX XML Cite
Full Text: DOI EuDML arXiv
References:
[1] G M Bergman, Generating infinite symmetric groups, Bull. London Math. Soc. (to appear) · Zbl 1103.20003 · doi:10.1112/S0024609305018308 · arxiv:math/0401304
[2] Y de Cornulier, Strongly bounded groups and infinite powers of finite groups, Comm. Algebra (to appear) · Zbl 1125.20023 · doi:10.1080/00927870600550194 · arxiv:math/0411466
[3] M Droste, W C Holland, Generating automorphism groups of chains, Forum Math. 17 (2005) 699 · Zbl 1093.20016 · doi:10.1515/form.2005.17.4.699
[4] J Franks, M Handel, Distortion elements in group actions on surfaces, · Zbl 1088.37009 · doi:10.1215/S0012-7094-06-13132-0
[5] F Galvin, Generating countable sets of permutations, J. London Math. Soc. \((2)\) 51 (1995) 230 · Zbl 0837.20005 · doi:10.1112/jlms/51.2.230
[6] J M Gambaudo, É Ghys, Commutators and diffeomorphisms of surfaces, Ergodic Theory Dynam. Systems 24 (2004) 1591 · Zbl 1088.37018 · doi:10.1017/S0143385703000737
[7] M Gromov, Hyperbolic groups, Math. Sci. Res. Inst. Publ. 8, Springer (1987) 75 · Zbl 0634.20015
[8] M Gromov, Asymptotic invariants of infinite groups, London Math. Soc. Lecture Note Ser. 182, Cambridge Univ. Press (1993) 1 · Zbl 0841.20039
[9] A Kechris, C Rosendal, Turbulence, amalgamation and generic automorphisms of homogeneous structures, · Zbl 1118.03042 · doi:10.1112/plms/pdl007
[10] A Khelif, À propos de la propriété de Bergman, preprint · Zbl 1107.20305
[11] R C Kirby, L C Siebenmann, Foundational essays on topological manifolds, smoothings, and triangulations, Princeton University Press (1977) · Zbl 0361.57004
[12] N Kopell, Commuting diffeomorphisms, Amer. Math. Soc. (1970) 165 · Zbl 0225.57020
[13] S Lang, Algebra, Graduate Texts in Mathematics 211, Springer (2002) · Zbl 0984.00001
[14] A Lubotzky, S Mozes, M S Raghunathan, The word and Riemannian metrics on lattices of semisimple groups, Inst. Hautes Études Sci. Publ. Math. (2000) · Zbl 0988.22007 · doi:10.1007/BF02698740 · numdam:PMIHES_2000__91__5_0 · eudml:104167
[15] G D Mostow, Strong rigidity of locally symmetric spaces, Princeton University Press (1973) · Zbl 0265.53039
[16] A Y Ol’shanskii, Distortion functions for subgroups, de Gruyter (1999) 281 · Zbl 1114.20304
[17] D Pixton, Nonsmoothable, unstable group actions, Trans. Amer. Math. Soc. 229 (1977) 259 · Zbl 0361.58005 · doi:10.2307/1998509
[18] M Pollicott, Lectures on ergodic theory and Pesin theory on compact manifolds, London Mathematical Society Lecture Note Series 180, Cambridge University Press (1993) · Zbl 0772.58001
[19] L Polterovich, Growth of maps, distortion in groups and symplectic geometry, Invent. Math. 150 (2002) 655 · Zbl 1036.53064 · doi:10.1007/s00222-002-0251-x · arxiv:math/0111050
[20] F Quinn, Ends of maps III: Dimensions 4 and 5, J. Differential Geom. 17 (1982) 503 · Zbl 0533.57009
[21] D Repov\vs, E \vS\vcepin, A proof of the Hilbert-Smith conjecture for actions by Lipschitz maps, Math. Ann. 308 (1997) 361 · Zbl 0879.57025 · doi:10.1007/s002080050080
[22] C Rosendal, A topological version of the Bergman Property, · Zbl 1165.03031 · arxiv:math.LO/0509670
[23] J P Serre, Arbres, amalgames, \(\mathrm{SL}_2\), Société Mathématique de France (1977) · Zbl 0369.20013
[24] Y G Sinaĭ, Topics in ergodic theory, Princeton Mathematical Series 44, Princeton University Press (1994)
[25] T Tsuboi, Homological and dynamical study on certain groups of Lipschitz homeomorphisms of the circle, J. Math. Soc. Japan 47 (1995) 1 · Zbl 0852.57031 · doi:10.2969/jmsj/04710001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.