zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Adaptive fuzzy synchronization of discrete-time chaotic systems. (English) Zbl 1106.37027
Summary: A fuzzy model-based adaptive approach to synchronize two different discrete-time chaotic systems is presented. A Takagi-Sugeno (TS) fuzzy model is employed to represent the chaotic drive and response systems. Since the parameters of the drive system are assumed unknown, an adaptive law is derived to estimate its unknown parameters. Then, a control law is proposed to stabilize the error dynamics. The design procedure is illustrated by two examples to demonstrate the effectiveness of the proposed methodology.

37D45Strange attractors, chaotic dynamics
93C42Fuzzy control systems
93C40Adaptive control systems
93D21Adaptive or robust stabilization
Full Text: DOI
[1] Angeli, De.A.; Genesio, R.; Tesi, A.: Dead-beat chaos synchronization in discrete-time systems. IEEE trans circ syst I 42, No. 1, 54-56 (1995)
[2] Astrom, K. J.; Wittenmark, B.: Adaptive control. (1995)
[3] Chen, G.; Dong, X.: From chaos to order: methodologies, perspectives and applications. (1998) · Zbl 0908.93005
[4] Dai, D.; Ma, X. -K.: Chaos synchronization by using intermittent parametric adaptive control method. Phys lett A 288, No. 1, 23-28 (2001) · Zbl 0971.37043
[5] Dyvany, R. L.: An introduction to chaotic dynamical systems. (1989)
[6] Feng, G.: Analysis of a new algorithm for continuous time robust adaptive control. IEEE trans autom control 44, 1764-1768 (1999) · Zbl 0957.93075
[7] Fuh, C. C.; Tung, C. P.: Controlling chaos using differential geometric method. Phys rev lett 75, No. 16, 2952-2955 (1995)
[8] Feng, G.; Chen, G.: Adaptive control of discrete-time chaotic systems: a fuzzy control approach. Chaos, solitons & fractals 23, 459-467 (2005) · Zbl 1061.93501
[9] Giuseppe, G.; Damon, A. M.: Theory and experimental realization of observer-based discrete-time hyperchaos synchronization. IEEE trans circ syst I 49, No. 3, 373-378 (2002)
[10] Kim, J. H.: Fuzzy adaptive synchronization of uncertain chaotic systems. Phys lett A 334, 295-305 (2005) · Zbl 1123.37307
[11] Huang, L.: Synchronization of chaotic systems via nonlinear control. Phys lett A 320, 271-275 (2004) · Zbl 1065.93028
[12] Ho, M. C.; Hung, Y. C.: Synchronization of two different systems by using generalized active control. Phys lett A 301, 424-428 (2002) · Zbl 0997.93081
[13] Pecora, L. M.; Carroll, T. L.: Synchronization in chaotic systems. Phys rev lett 64, 821-824 (1990) · Zbl 0938.37019
[14] Chen, S.; Lu, J.: Synchronization of an uncertain unified chaotic system via adaptive control. Chaos, solitons & fractals 14, 643-647 (2002) · Zbl 1005.93020
[15] Tanaka, K.; Ikeda, T.; Wang, H. O.: A unified approach to controlling chaos via LMI-based fuzzy control system design. IEEE trans. Circ syst I 45, 1021-1040 (1998) · Zbl 0951.93046
[16] Yang, X. -S.; Chen, G. -R.: Some observer-based criteria for discrete-time generalized chaos synchronization. Chaos, solitons & fractals 13, No. 6, 1303-1308 (2002) · Zbl 1006.93580
[17] Xue, U. J.; Yang, S. Y.: Synchronization of generalized henon map by using adaptive fuzzy controller. Chaos, solitons & fractals 17, 717-722 (2003) · Zbl 1043.93519
[18] Tan, X.: Synchronizing chaotic systems using backstepping design. Chaos, solitons & fractals 16, 37-45 (2003) · Zbl 1035.34025