×

Frequency locking on the boundary of the barycentre set. (English) Zbl 1106.37303

Summary: We consider the doubling map \(T: z\mapsto z^2\) of the circle. For each \(T\)-invariant probability measure \(\mu\) we define its barycentre \(b(\mu)=\int_{S^1}z\, d\mu(z)\), which describes its average weight around the circle. We study the set \(\Omega\) of all such barycentres, a compact convex set with nonempty interior. Its boundary has a countable dense set of points of nondifferentiability, the worst possible regularity for the boundary of a convex set. We explain this behaviour in terms of the frequency locking of rotation numbers for a certain class of invariant measures, each supported on the closure of a Sturmian orbit.

MSC:

37E10 Dynamical systems involving maps of the circle
11K50 Metric theory of continued fractions
37A05 Dynamical aspects of measure-preserving transformations
37E15 Combinatorial dynamics (types of periodic orbits)

References:

[1] Berstel J., Developments in language theory, II (Magdeburg, 1995) pp 13– (1996)
[2] Bousch T., ”Le poisson n’a pas d’arêtes” (1998) · Zbl 0971.37001
[3] Boyland P. L., Comm. Math. Phys. 106 (3) pp 353– (1986) · Zbl 0612.58032 · doi:10.1007/BF01207252
[4] Brown T. C., Canad. Math. Bull. 36 (1) pp 15– (1993) · Zbl 0804.11021 · doi:10.4153/CMB-1993-003-6
[5] Bullett S., Math. Proc. Cambridge Philos. Soc. 115 (3) pp 451– (1994) · Zbl 0823.58012 · doi:10.1017/S0305004100072236
[6] Gambaudo J.-M., C. R. Acad. Sci. Paris Sér. I Math. 299 (16) pp 823– (1984)
[7] Hardy G. H., An introduction to the theory of numbers, (1979) · Zbl 0423.10001
[8] Hunt B. R., Phys. Rev. E 54 pp 328– (1996) · doi:10.1103/PhysRevE.54.328
[9] Jenkinson O., Ph.D. thesis, in: Conjugacy rigidity, cohomological triviality, and barycentres of invariant measures (1996)
[10] Katok A., Introduction to the modern theory of dynamical systems (1995) · Zbl 0878.58020
[11] Morse M., Amer. J. Math. 62 pp 1– (1940) · Zbl 0022.34003 · doi:10.2307/2371431
[12] Newhouse S., Publ. Math. Inst. Hautes Études Sci. 57 pp 5– (1983) · Zbl 0518.58031 · doi:10.1007/BF02698773
[13] Royden H. L., Real analysis,, 3. ed. (1988) · Zbl 0704.26006
[14] Series C., Math. Intelligencer 7 (3) pp 20– (1985) · Zbl 0566.10024 · doi:10.1007/BF03025802
[15] Veerman P., Phys. A 134 (3) pp 543– (1986) · Zbl 0655.58019 · doi:10.1016/0378-4371(86)90015-4
[16] Veerman P., Phys. D 29 (1) pp 191– (1987) · Zbl 0625.28012 · doi:10.1016/0167-2789(87)90055-8
[17] Walters P., An introduction to ergodic theory (1982) · Zbl 0475.28009 · doi:10.1007/978-1-4612-5775-2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.