zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Applications of measure of noncompactness in operators on the spaces $s_{\alpha}$, $s_{\alpha}^{0}$, $s_{\alpha}^{(c)}$, $\ell_{\alpha}^{p}$. (English) Zbl 1106.47029
We characterize some operators and matrix transformations in the sequence spaces $s_\alpha$, $s^{(0)}_\alpha$, $s^{(c)}_\alpha$, $l^p_\alpha$. Moreover, using the Hausdorff measure of noncompactness, necessary and sufficient conditions are formulated for a linear operator between the mentioned spaces to be compact. Among other things, some results of {\it L. W. Cohen} and {\it N. Dunford} [Duke Math. J. 3, 689--701 (1937; Zbl 0018.07101; JFM 63.0352.01)] are recovered.

47B37Operators on special spaces (weighted shifts, operators on sequence spaces, etc.)
47H09Mappings defined by “shrinking” properties
47A53(Semi-) Fredholm operators; index theories
46B45Banach sequence spaces
Full Text: DOI
[1] Akhmerov, R. R.; Kamenskii, M. I.; Potapov, A. S.; Rodkina, A. E.; Sadovskii, B. N.: Measures of noncompactness and condensing operators. Oper. theory adv. Appl. 55 (1992)
[2] Banás, J.; Goebl, K.: Measures of noncompactness in Banach spaces. Lecture notes in pure and appl. Math. 60 (1980)
[3] Cohen, L. W.; Dunford, N.: Transformations on sequence spaces. Duke math. J. 3, 689-701 (1937) · Zbl 0018.07101
[4] Goldenstein, L. S.; Gohberg, I. C.; Markus, A. S.: Investigation of some properties of bounded linear operators in connection with their q-norms. Učen. zap. Kishinevsk. univ. 29, 29-36 (1957)
[5] Maddox, I. J.: Elements of functional analysis. (1970) · Zbl 0193.08601
[6] Maddox, I. J.: Infinite matrices of operators. (1980) · Zbl 0424.40002
[7] De Malafosse, B.: On some BK space. Int. J. Math. math. Sci. 28, 1783-1801 (2003) · Zbl 1023.46010
[8] De Malafosse, B.: Calculations on some sequence spaces. Int. J. Math. math. Sci. 31, 1653-1670 (2004) · Zbl 1082.46007
[9] B. de Malafosse, Sur la théorie des matrices infinies et applications, Habilitation à diriger des recherches, Université du Havre, Le Havre, 2004
[10] De Malafosse, B.; Malkowsky, E.: Sequence spaces and inverse of an infinite matrix. Rend. circ. Mat. Palermo (2) 51, 277-294 (2002) · Zbl 1194.46006
[11] Malkowsky, E.; Rakočević, V.: An introduction into the theory of sequence spaces and measure of noncompactness. Zb.r., matematički institut SANU 9, No. 17, 143-243 (2000)
[12] Rakočević, V.: Functional analysis. (1994)
[13] Sargent, W. L. C.: On compact matrix transformations between sectionally boun ded BK-spaces. J. London math. Soc. 41, 79-87 (1966) · Zbl 0135.36402
[14] Steiglitz, M.; Tietz, H.: Matrixtransformationen von folgenrä umen eine ergebnisü bersicht. Math. Z. 154, 1-16 (1977) · Zbl 0331.40005
[15] Taylor, A. E.: Introduction to functional analysis. (1958) · Zbl 0081.10202
[16] Thorp, E. O.: The range as range space for compact operators. II. J. reine angew. Math. 217, 69-78 (1965) · Zbl 0135.36304
[17] Wilansky, A.: Summability through functional analysis. North-holland math. Stud. 85 (1984) · Zbl 0531.40008