×

On slant curves in Sasakian 3-manifolds. (English) Zbl 1106.53013

Summary: A classical theorem by Lancret says that a curve in Euclidean 3-space is of constant slope if and only if its ratio of curvature and torsion is constant. In this paper we study Lancret type problems for curves in Sasakian 3-manifolds.

MSC:

53B25 Local submanifolds
53C25 Special Riemannian manifolds (Einstein, Sasakian, etc.)
53A04 Curves in Euclidean and related spaces
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] DOI: 10.2748/tmj/1178228284 · Zbl 0632.53039
[2] DOI: 10.1142/S0129167X01001027 · Zbl 1111.53302
[3] DOI: 10.1007/BF01610616 · Zbl 0799.53040
[4] DOI: 10.1090/S0002-9939-97-03692-7 · Zbl 0876.53035
[5] Tanno, C. R. Acad. Sci. Paris Ser. A-B 263 pp A317– (1966)
[6] Struik, Lectures on classical differential geometry (1950) · Zbl 0041.48603
[7] Lancret, Mémoires présentés à l’Institut 1 pp 416– (1806)
[8] O’Neill, Elementary differential geometry (1966)
[9] Inoguchi, Hokkaido Math. J. 34 pp 375– (2005) · Zbl 1082.53022
[10] DOI: 10.1155/S016117120320805X · Zbl 1076.53501
[11] DOI: 10.1088/0305-4470/35/39/308 · Zbl 1052.53028
[12] DOI: 10.1142/S0217751X01005821 · Zbl 1003.53052
[13] Ferrández, Proc. Workshop on Recent Topics in Differential Geometry, Santiago de Compostera 89 pp 109– (1998)
[14] Chen, Mem. Fac. Sci. Kyushu Univ. Ser A 45 pp 323– (1991)
[15] Eisenhart, A treatise on the differential geometry of curves and surfaces (1909) · JFM 40.0657.01
[16] Caddeo, Rend. Sem. Mat. Univ. Politec. Torino 62 pp 265– (2004)
[17] Blair, Riemannian geometry of contact and symplectic manifolds, 203 (2002) · Zbl 1011.53001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.