Riesz transform and \(L^p\)-cohomology for manifolds with Euclidean ends. (English) Zbl 1106.58021

The authors are here interested in studying boundedness properties of the Riesz transform on some particular Riemannian manifolds. More precisely, they consider smooth Riemannian manifolds \(M\) that are the union of a compact part and a finite number of Euclidean ends, \({\mathbb R}^n\setminus B(0,R)\), for some \(R>0\), each of which carries the standard metric. The Riesz transform on \(M\) is the operator \(T:L^2(M)\to L^2(M;T^*M)\), given by \(T(f)=d\triangle^{-1/2}f\), where \(\triangle\) is the positive Laplace operator on \(M\). It is just well known that \(T\) is always a bounded map for \(p=2\). Their main result is that \(T\) is bounded for \(1<p<n\) and unbounded for \(p\geq n\), if there is more than one end. The method used is to analyze the kernel of \(\triangle^{-1/2}\) to which can be applied the theory of scattering differential operators [Melrose]. Then, analyzing also the kernel of \(T\) they directly arrive to obtain the result.
A further result is contained in this paper that relates the boundedness of the Riesz transform in \(L^p\), \(p>2\), to a more general class of manifolds (\(n\)-dimensional complete manifolds satisfying the Nash inequality and under an \(O(r^n)\) upper bound on the volume growth of geodesic balls). They show, in fact, that under suitable hypotheses, the Riesz transform is bounded in \(L^p\) for some \(p>2\), and for the first space of reduced \(L^p\) cohomology of \((M,g)\), i.e., \(H^1_p(M)={{\{\alpha\in L^p(T^*M), d\alpha=0\}}\over{\overline{dC^\infty_0(M)}}}\), one has the isomorphism \(H^1_p(M)\cong\{\alpha\in L^p(M;T^*M)| d\alpha=0\), \(d^*\alpha=0\}\).
The paper ends with some concluding remarks and a list of open problems.


58J50 Spectral problems; spectral geometry; scattering theory on manifolds
58J35 Heat and other parabolic equation methods for PDEs on manifolds
42B20 Singular and oscillatory integrals (Calderón-Zygmund, etc.)
Full Text: DOI arXiv


[1] M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , Dover, New York, 1965.
[2] G. Alexopoulos, An application of homogenization theory to harmonic analysis: Harnack inequalities and Riesz transforms on Lie groups of polynomial growth , Canad. J. Math. 44 (1992), 691–727. · Zbl 0792.22005
[3] J.-P. Anker, Sharp estimates for some functions of the Laplacian on noncompact symmetric spaces , Duke Math. J. 65 (1992), 257–297. · Zbl 0764.43005
[4] P. Auscher and T. Coulhon, Riesz transform on manifolds and Poincaré inequalities , Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 4 (2005), 531–555. · Zbl 1116.58023
[5] P. Auscher, T. Coulhon, X. T. Duong, and S. Hofmann, Riesz transform on manifolds and heat kernel regularity , Ann. Sci. École Norm. Sup. (4) 37 (2004), 911–957. · Zbl 1086.58013
[6] D. Bakry, “Étude des transformations de Riesz dans les variétés riemanniennes à courbure de Ricci minorée” in Séminaire de Probabilités, XXI , Lecture Notes in Math. 1247 , Springer, Berlin, 1987, 137–172. · Zbl 0629.58018
[7] D. Bakry, T. Coulhon, M. Ledoux, and L. Saloff-Coste, Sobolev inequalities in disguise , Indiana Univ. Math. J. 44 (1995), 1033–1074. · Zbl 0857.26006
[8] I. Benjamini, I. Chavel, and E. A. Feldman, Heat kernel lower bounds on Riemannian manifolds using the old ideas of Nash , Proc. London Math. Soc. (3) 72 (1996), 215–240. · Zbl 0853.58098
[9] P. H. BéRard, From vanishing theorems to estimating theorems: The Bochner technique revisited , Bull. Amer. Math. Soc. (N.S.) 19 (1988), 371–406. · Zbl 0662.53037
[10] H.-D. Cao, Y. Shen, and S. Zhu, The structure of stable minimal hypersurfaces in \(\RR^n+1\) , Math. Res. Lett. 4 (1997), 637–644. · Zbl 0906.53004
[11] E. A. Carlen, S. Kusuoka, and D. W. Stroock, Upper bounds for symmetric Markov transition functions , Ann. Inst. H. Poincaré Probab. Statist. 23 (1987), no. 2, suppl., 245–287. · Zbl 0634.60066
[12] G. Carron, “Inégalités isopérimétriques de Faber-Krahn et conséquences” in Actes de la table ronde de géométrie différentielle (Luminy, France, 1992) , Sémin. Congr. 1 , Soc. Math. France, Montrouge, 1996, 205–232. · Zbl 0884.58088
[13] -, Cohomologie \(L^2\) et parabolicité , J. Geom. Anal. 15 (2005), 391–404.
[14] T. Coulhon and X. T. Duong, Riesz transforms for \(1 \leq p \leq 2\) , Trans. Amer. Math. Soc. 351 (1999), 1151–1169. JSTOR: · Zbl 0973.58018
[15] -, Riesz transform and related inequalities on noncompact Riemannian manifolds , Comm. Pure Appl. Math. 56 (2003), 1728–1751. · Zbl 1037.58017
[16] T. Coulhon and M. Ledoux, Isopérimétrie, décroissance du noyau de la chaleur et transformations de Riesz: Un contre-exemple , Ark. Mat. 32 (1994), 63–77. · Zbl 0826.53035
[17] T. Coulhon and H.-Q. Li, Estimations inférieures du noyau de la chaleur sur les variétés coniques et transformée de Riesz , Arch. Math. (Basel) 83 (2004), 229–242. · Zbl 1076.58017
[18] G. De Rham, Variétés différentiables. Formes, courants, formes harmoniques , Publ. Inst. Math. Univ. Nancago 3 , Actualités Sci. Indust. 1222b , 3rd ed., Hermann, Paris, 1973.
[19] A. Grigor’Yan, Heat kernel upper bounds on a complete non-compact manifold , Rev. Mat. Iberoamericana 10 (1994), 395–452. · Zbl 0810.58040
[20] -, “Estimates of heat kernels on Riemannian manifolds” in Spectral Theory and Geometry (Edinburgh, 1998) , London Math. Soc. Lecture Note Ser. 273 , Cambridge Univ. Press, Cambridge, 1999, 140–225. · Zbl 0985.58007
[21] A. Grigor’Yan and L. Saloff-Coste, Heat kernel on connected sums of Riemannian manifolds , Math. Res. Lett. 6 (1999), 307–321. · Zbl 0957.58023
[22] A. Hassell and A. Vasy, Symbolic functional calculus of N-body resolvent estimates , J. Funct. Anal. 173 (2000), 257–283. · Zbl 0960.58025
[23] -, The resolvent for Laplace-type operators on asymptotically conic spaces , Ann. Inst. Fourier (Grenoble) 51 (2001), 1299–1346. · Zbl 0983.35098
[24] L. HöRmander, The Analysis of Linear Partial Differential Operators, 3: Pseudo-Differential Operators , Grundlehren Math. Wiss. 274 , Springer, Berlin, 1985. · Zbl 0601.35001
[25] H.-Q. Li, La transformation de Riesz sur les variétés coniques , J. Funct. Anal. 168 (1999), 145–238. · Zbl 0937.43004
[26] N. Lohoué, Comparaison des champs de vecteurs et des puissances du laplacien sur une variété riemannienne à courbure non positive , J. Funct. Anal. 61 (1985), 164–201. · Zbl 0605.58051
[27] R. B. Melrose, Calculus of conormal distributions on manifolds with corners , Internat. Math. Res. Notices 1992 , no. 3, 51–61. · Zbl 0754.58035
[28] -, The Atiyah-Patodi-Singer Index Theorem , Res. Notes in Math. 4 , Peters, Wellesley, Mass., 1993. · Zbl 0796.58050
[29] -, “Spectral and scattering theory for the Laplacian on asymptotically Euclidian spaces” in Spectral and Scattering Theory (Sanda, Japan, 1992) , Lect. Notes Pure Appl. Math. 161 , Dekker, New York, 1994, 85–130. · Zbl 0837.35107
[30] E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals , Princeton Math. Ser. 43 , Monogr. Harmon. Anal. 3 , Princeton Univ. Press, Princeton, 1993. · Zbl 0821.42001
[31] N. T. Varopoulos, Hardy-Littlewood theory for semigroups , J. Funct. Anal. 63 (1985), 240–260. · Zbl 0608.47047
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.