×

Efficient prediction for linear and nonlinear autoregressive models. (English) Zbl 1106.62103

Summary: Conditional expectations given past observations in stationary time series are usually estimated directly by kernel estimators, or by plugging in kernel estimators for transition densities. We show that, for linear and nonlinear autoregressive models driven by independent innovations, appropriate smoothed and weighted von Mises statistics of residuals estimate conditional expectations at better parametric rates and are asymptotically efficient. The proof is based on a uniform stochastic expansion for smoothed and weighted von Mises processes of residuals. We consider, in particular, estimation of conditional distribution functions and of conditional quantile functions.

MSC:

62M20 Inference from stochastic processes and prediction
62G20 Asymptotic properties of nonparametric inference
62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)
62G08 Nonparametric regression and quantile regression
60F17 Functional limit theorems; invariance principles

References:

[1] An, H. Z. and Huang, F. C. (1996). The geometrical ergodicity of nonlinear autoregressive models. Statist. Sinica 6 943–956. · Zbl 0857.62085
[2] Berkes, I. and Horváth, L. (2001). Strong approximation of the empirical process of GARCH sequences. Ann. Appl. Probab. 11 789–809. [Correction 13 (2003) 389.] · Zbl 1014.60033 · doi:10.1214/aoap/1015345349
[3] Berkes, I. and Horváth, L. (2002). Empirical processes of residuals. In Empirical Process Techniques for Dependent Data (H. Dehling, T. Mikosch and M. Sørensen, eds.) 195–209. Birkhäuser, Boston. · Zbl 1021.62071
[4] Bhattacharya, R. N. and Lee, C. (1995). Ergodicity of nonlinear first order autoregressive models. J. Theoret. Probab. 8 207–219. · Zbl 0815.60059 · doi:10.1007/BF02213462
[5] Bhattacharya, R. and Lee, C. (1995). On geometric ergodicity of nonlinear autoregressive models. Statist. Probab. Lett. 22 311–315. [Correction 41 (1999) 439–440.] · Zbl 0830.60059
[6] Boldin, M. V. (1998). On residual empirical distribution functions in ARCH models with applications to testing and estimation. Mitt. Math. Sem. Giessen No. 235 49–66. · Zbl 0921.62063
[7] Boldin, M. V. (2000). On empirical processes in heteroscedastic time series and their use for hypothesis testing and estimation. Math. Methods Statist. 9 65–89. · Zbl 1006.62076
[8] Collomb, G. (1984). Propriétés de convergence presque complète de prédicteur à noyau. Z. Wahrsch. Verw. Gebiete 66 441–460. · Zbl 0525.62046 · doi:10.1007/BF00533708
[9] Delecroix, M. and Rosa, A. C. (1995). Ergodic processes prediction via estimation of the conditional distribution function. Publ. Inst. Statist. Univ. Paris 39 35–56. · Zbl 0834.62089
[10] Gill, R. D. (1989). Non- and semi-parametric maximum likelihood estimators and the von Mises method. I (with discussion). Scand. J. Statist. 16 97–128. · Zbl 0688.62026
[11] Golubev, G. K. and Levit, B. Y. (1996). On the second order minimax estimation of distribution functions. Math. Methods Statist. 5 1–31. · Zbl 0853.62028
[12] Haberman, S. J. (1984). Adjustment by minimum discriminant information. Ann. Statist. 12 971–988. [Correction 14 (1986) 358.] · Zbl 0583.62020 · doi:10.1214/aos/1176346715
[13] Koul, H. L. and Schick, A. (1996). Adaptive estimation in a random coefficient autoregressive model. Ann. Statist. 24 1025–1052. · Zbl 0906.62087 · doi:10.1214/aos/1032526954
[14] Koul, H. L. and Schick, A. (1997). Efficient estimation in nonlinear autoregressive time-series models. Bernoulli 3 247–277. · Zbl 1066.62537 · doi:10.2307/3318592
[15] Levit, B. Y. (1975). Conditional estimation of linear functionals. Problems Inform. Transmission 11 291–302. · Zbl 0379.62022
[16] Masry, E. (1989). Nonparametric estimation of conditional probability densities and expectations of stationary processes: Strong consistency and rates. Stochastic Process. Appl. 32 109–127. · Zbl 0692.62034 · doi:10.1016/0304-4149(89)90056-2
[17] Müller, U. U., Schick, A. and Wefelmeyer, W. (2001). Improved estimators for constrained Markov chain models. Statist. Probab. Lett. 54 427–435. · Zbl 1002.62065 · doi:10.1016/S0167-7152(01)00121-3
[18] Müller, U. U., Schick, A. and Wefelmeyer, W. (2005). Weighted residual-based density estimators for nonlinear autoregressive models. Statist. Sinica 15 177–195. · Zbl 1059.62035
[19] Owen, A. B. (1988). Empirical likelihood ratio confidence intervals for a single functional. Biometrika 75 237–249. JSTOR: · Zbl 0641.62032 · doi:10.1093/biomet/75.2.237
[20] Owen, A. B. (2001). Empirical Likelihood . Chapman and Hall/CRC, Boca Raton, FL. · Zbl 0989.62019
[21] Radulović, D. and Wegkamp, M. (2000). Weak convergence of smoothed empirical processes: Beyond Donsker classes. In High Dimensional Probability II (E. Giné, D. Mason and J. Wellner, eds.) 89–105. Birkhäuser, Boston. · Zbl 0973.60025
[22] Radulović, D. and Wegkamp, M. (2003). Necessary and sufficient conditions for weak convergence of smoothed empirical processes. Statist. Probab. Lett. 61 321–336. · Zbl 1048.62051 · doi:10.1016/S0167-7152(02)00395-4
[23] Robinson, P. M. (1983). Nonparametric estimators for time series. J. Time Ser. Anal. 4 185–207. · Zbl 0544.62082 · doi:10.1111/j.1467-9892.1983.tb00368.x
[24] Robinson, P. M. (1986). On the consistency and finite-sample properties of nonparametric kernel time series regression, autoregression and density estimators. Ann. Inst. Statist. Math. 38 539–549. · Zbl 0612.62126 · doi:10.1007/BF02482541
[25] Rost, D. (2000). Limit theorems for smoothed empirical processes. In High Dimensional Probability II (E. Giné, D. Mason and J. Wellner, eds.) 107–113. Birkhäuser, Boston. · Zbl 0968.60023
[26] Roussas, G. G. (1969). Nonparametric estimation of the transition distribution function of a Markov process. Ann. Math. Statist. 40 1386–1400. · Zbl 0188.50501 · doi:10.1214/aoms/1177697510
[27] Roussas, G. G. (1991). Estimation of transition distribution function and its quantiles in Markov processes: Strong consistency and asymptotic normality. In Nonparametric Functional Estimation and Related Topics (G. G. Roussas, ed.) 443–462. Kluwer, Dordrecht. · Zbl 0735.62081
[28] Roussas, G. G. (1991). Recursive estimation of the transition distribution function of a Markov process: Asymptotic normality. Statist. Probab. Lett. 11 435–447. · Zbl 0735.62082 · doi:10.1016/0167-7152(91)90193-U
[29] Roussas, G. G. and Tran, L. T. (1992). Asymptotic normality of the recursive kernel regression estimate under dependence conditions. Ann. Statist. 20 98–120. · Zbl 0925.62171 · doi:10.1214/aos/1176348514
[30] Rudin, W. (1974). Real and Complex Analysis , 2nd ed. McGraw-Hill, New York. · Zbl 0278.26001
[31] Saavedra, A. and Cao, R. (2000). On the estimation of the marginal density of a moving average process. Canad. J. Statist. 28 799–815. · Zbl 0966.62022 · doi:10.2307/3315917
[32] Schick, A. and Wefelmeyer, W. (2002). Estimating the innovation distribution in nonlinear autoregressive models. Ann. Inst. Statist. Math. 54 245–260. · Zbl 1013.62092 · doi:10.1023/A:1022413700321
[33] Schick, A. and Wefelmeyer, W. (2004). Estimating invariant laws of linear processes by U -statistics. Ann. Statist. 32 603–632. · Zbl 1091.62066 · doi:10.1214/009053604000000111
[34] Schick, A. and Wefelmeyer, W. (2004). Root \(n\) consistent and optimal density estimators for moving average processes. Scand. J. Statist. 31 63–78. · Zbl 1053.62045 · doi:10.1111/j.1467-9469.2004.00373.x
[35] Schick, A. and Wefelmeyer, W. (2004). Functional convergence and optimality of plug-in estimators for stationary densities of moving average processes. Bernoulli 10 889–917. · Zbl 1058.62072 · doi:10.3150/bj/1099579161
[36] Tran, L. T. (1993). Nonparametric function estimation for time series by local average estimators. Ann. Statist. 21 1040–1057. · Zbl 0790.62037 · doi:10.1214/aos/1176349163
[37] Truong, Y. K. and Stone, C. J. (1992). Nonparametric function estimation involving time series. Ann. Statist. 20 77–97. · Zbl 0764.62038 · doi:10.1214/aos/1176348513
[38] van der Vaart, A. W. (1994). Weak convergence of smoothed empirical processes. Scand. J. Statist. 21 501–504. · Zbl 0809.62040
[39] van der Vaart, A. W. and Wellner, J. A. (1996). Weak Convergence and Empirical Processes. With Applications to Statistics. Springer, New York. · Zbl 0862.60002
[40] Van Keilegom, I., Akritas, M. G. and Veraverbeke, N. (2001). Estimation of the conditional distribution in regression with censored data: A comparative study. Comput. Statist. Data Anal. 35 487–500. · Zbl 1080.62515 · doi:10.1016/S0167-9473(00)00025-6
[41] Van Keilegom, I. and Veraverbeke, N. (2001). Hazard rate estimation in nonparametric regression with censored data. Ann. Inst. Statist. Math. 53 730–745. · Zbl 1003.62039 · doi:10.1023/A:1014696717644
[42] Van Keilegom, I. and Veraverbeke, N. (2002). Density and hazard estimation in censored regression models. Bernoulli 8 607–625. · Zbl 1007.62029
[43] Yakowitz, S. (1985). Nonparametric density estimation, prediction, and regression for Markov sequences. J. Amer. Statist. Assoc. 80 215–221. JSTOR: · Zbl 0566.62029 · doi:10.2307/2288075
[44] Yakowitz, S. (1987). Nearest-neighbour methods for time series analysis. J. Time Ser. Anal. 8 235–247. · Zbl 0615.62115 · doi:10.1111/j.1467-9892.1987.tb00435.x
[45] Yosida, K. (1980). Functional Analysis , 6th ed. Springer, Berlin. · Zbl 0435.46002
[46] Yukich, J. E. (1992). Weak convergence of smoothed empirical processes. Scand. J. Statist. 19 271–279. · Zbl 0756.60026
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.