zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Bayesian analysis of mixture models with an unknown number of components -- an alternative to reversible jump methods. (English) Zbl 1106.62316
Summary: Richardson and Green presented a method of performing a Bayesian analysis of data from a finite mixture distribution with an unknown number of components. Their method is a Markov Chain Monte Carlo (MCMC) approach, which makes use of the “reversible jump” methodology described by Green. We describe an alternative MCMC method which views the parameters of the model as a (marked) point process, extending methods suggested by Ripley to create a Markov birth-death process with an appropriate stationary distribution. Our method is easy to implement, even in the case of data in more than one dimension, and we illustrate it on both univariate and bivariate data. There appears to be considerable potential for applying these ideas to other contexts, as an alternative to more general reversible jump methods, and we conclude with a brief discussion of how this might be achieved.

MSC:
62F15Bayesian inference
65C40Computational Markov chains (numerical analysis)
60J80Branching processes
65C60Computational problems in statistics
Software:
R; S-PLUS; BayesDA; spatial
WorldCat.org
Full Text: DOI Euclid
References:
[1] Anderson, E. (1935). The irises of the Gaspe Peninsula. Bulletin of the American Iris Society 59 2-5.
[2] Baddeley, A. J. and van Lieshout, M. N. M. (1993). Stochastic geometry models in high-level vision. In Advances in Applied Statistics (K. V. Mardia and G. K. Kanji, eds.) 1 231-256. Carfax, Abingdon, UK.
[3] Brooks, S. P. and Roberts, G. O. (1998). Convergence assessment techniques for Markov chain Monte Carlo. Statist. Comput. 8 319-335.
[4] Carlin, B. P. and Chib, S. (1995). Bayesian model choice via Markov Chain Monte Carlo methods. J. Roy. Statist. Soc. Ser. B 57 473-484. · Zbl 0827.62027
[5] Chib, S. (1995). Marginal likelihood from the Gibbs output. J. Amer. Statist. Assoc. 90 1313-1321. JSTOR: · Zbl 0868.62027 · doi:10.2307/2291521 · http://links.jstor.org/sici?sici=0162-1459%28199512%2990%3A432%3C1313%3AMLFTGO%3E2.0.CO%3B2-2&origin=euclid
[6] Cowles, M. K. and Carlin, B. P. (1996). Markov Chain Monte Carlo convergence diagnostics: a comparative review. J. Amer. Statist. Assoc. 91 883-904. JSTOR: · Zbl 0869.62066 · doi:10.2307/2291683 · http://links.jstor.org/sici?sici=0162-1459%28199606%2991%3A434%3C883%3AMCMCCD%3E2.0.CO%3B2-X&origin=euclid
[7] Crawford, S. L. (1994). An application of the Laplace method to finite mixture distributions. J. Amer. Statist. Assoc. 89 259-267. JSTOR: · Zbl 0795.62022 · doi:10.2307/2291222 · http://links.jstor.org/sici?sici=0162-1459%28199403%2989%3A425%3C259%3AAAOTLM%3E2.0.CO%3B2-K&origin=euclid
[8] Dawid, A. P. (1997). Contribution to the discussion of paper by Richardson and Green (1997). J. Roy. Statist. Soc. Ser. B 59 772-773.
[9] DiCiccio, T., Kass, R., Raftery, A. and Wasserman, L. (1997). Computing Bayes factors by posterior simulation and asymptotic approximations. J. Amer. Statist. Assoc. 92 903- 915. JSTOR: · Zbl 1050.62520 · doi:10.2307/2965554 · http://links.jstor.org/sici?sici=0162-1459%28199709%2992%3A439%3C903%3ACBFBCS%3E2.0.CO%3B2-G&origin=euclid
[10] Diebolt, J. and Robert, C. P. (1994). Estimation of finite mixture distributions through Bayesian sampling. J. Roy. Statist. Soc. Ser. B 56 363-375. JSTOR: · Zbl 0796.62028 · http://links.jstor.org/sici?sici=0035-9246%281994%2956%3A2%3C363%3AEOFMDT%3E2.0.CO%3B2-8&origin=euclid
[11] Escobar, M. D. and West, M. (1995). Bayesian density estimation and inference using mixtures. J. Amer. Statist. Assoc. 90 577-588. JSTOR: · Zbl 0826.62021 · doi:10.2307/2291069 · http://links.jstor.org/sici?sici=0162-1459%28199506%2990%3A430%3C577%3ABDEAIU%3E2.0.CO%3B2-8&origin=euclid
[12] Gelman, A. and Rubin, D. B. (1992). Inference from iterative simulation using multiple sequences (with discussion). Statist. Sci. 7 457-511. · Zbl 0767.62021
[13] Gelman, A. G., Carlin, J. B., Stern, H. S. and Rubin, D. B. (1995). Bayesian Data Analysis. Chapman & Hall, London. · Zbl 1279.62004
[14] George, E. I. and McCulloch, R. E. (1996). Stochastic search variable selection. In Markov Chain Monte Carlo in Practice (W. R. Gilks, S. Richardson and D. J. Spiegelhalter, eds.) Chapman & Hall, London. · Zbl 0844.62051
[15] Geyer, C. J. and Møller, J. (1994). Simulation procedures and likelihood inference for spatial point processes. Scand. J. Statist. 21 359-373. · Zbl 0809.62089
[16] Gilks, W. R., Richardson, S. and Spiegelhalter, D. J., eds. (1996). Markov Chain Monte Carlo in Practice. Chapman & Hall, London. · Zbl 0832.00018
[17] Gl ötzl, E. (1981). Time-reversible and Gibbsian point processes I. Markovian spatial birth and death process on a general phase space. Math. Nach. 102 217-222. · Zbl 0483.60091 · doi:10.1002/mana.19811020118
[18] Green, P. J. (1995). Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika 82 711-732. JSTOR: · Zbl 0861.62023 · doi:10.1093/biomet/82.4.711 · http://links.jstor.org/sici?sici=0006-3444%28199512%2982%3A4%3C711%3ARJMCMC%3E2.0.CO%3B2-F&origin=euclid
[19] Härdle, W. (1991). Smoothing techniques with implementation in S. Springer, New York. · Zbl 0716.62040
[20] Jennison, C. (1997). Comment on ”On Bayesian analysis of mixtures with an unknown number of components,” by S. Richardson and P. J. Green. J. Roy. Statist. Soc. Ser. B 59 778-779. Kelly, F. P. and Ripley, B. D. (1976) A note on Strauss’s model for clustering. Biometrika 63 357-360. JSTOR: · doi:10.1111/1467-9868.00095 · http://links.jstor.org/sici?sici=0035-9246%281997%2959%3A4%3C731%3AOBAOMW%3E2.0.CO%3B2-B&origin=euclid
[21] Lawson, A. B. (1996). Markov chain Monte Carlo methods for spatial cluster processes. In Computer Science and Statistics: Proceedings of the 27th Symposium on the Interface 314-319.
[22] Mathieson, M. J. (1997). Ordinal models and predictive methods in pattern recognition. Ph.D. thesis, Univ. Oxford.
[23] McLachlan, G. J. (1992). Discriminant Analysis and Statistical Pattern Recognition. Wiley, New York. · Zbl 1108.62317
[24] McLachlan, G. J. and Basford, K. E. (1988). Mixture Models: Inference and Applications to Clustering. Dekker, New York. · Zbl 0697.62050
[25] Phillips, D. B. and Smith, A. F. M. (1996). Bayesian model comparison via jump diffusions. In · Zbl 0855.62018
[26] Postman, M., Huchra, J. P. and Geller, M. J. (1986). Probes of large-scale structure in the Corona Borealis region. The Astronomical Journal 92 1238-1247.
[27] Preston, C. J. (1976). Spatial birth-and-death processes. Bull. Inst. Internat. Statist. 46 371-391. · Zbl 0379.60082
[28] Priebe, C. E. (1994). Adaptive mixtures. J. Amer. Statist. Assoc. 89 796-806. JSTOR: · Zbl 0825.62445 · doi:10.2307/2290905 · http://links.jstor.org/sici?sici=0162-1459%28199409%2989%3A427%3C796%3AAM%3E2.0.CO%3B2-0&origin=euclid
[29] Richardson, S. and Green, P. J. (1997). On Bayesian analysis of mixtures with an unknown number of components (with discussion). J. Roy. Statist. Soc. Ser. B 59 731-792. JSTOR: · Zbl 0891.62020 · doi:10.1111/1467-9868.00095 · http://links.jstor.org/sici?sici=0035-9246%281997%2959%3A4%3C731%3AOBAOMW%3E2.0.CO%3B2-B&origin=euclid
[30] Ripley, B. D. (1977). Modelling spatial patterns (with discussion). J. Roy. Statist. Soc. Ser. B 39 172-212. JSTOR: · http://links.jstor.org/sici?sici=0035-9246%281977%2939%3A2%3C172%3AMSP%3E2.0.CO%3B2-9&origin=euclid
[31] Ripley, B. D. (1987). Stochastic Simulation. Wiley, New York. · Zbl 0613.65006
[32] Robert, C. P. (1994). The Bayesian Choice: a Decision-Theoretic Motivation. Springer, New York. · Zbl 0808.62005
[33] Robert, C. P. (1996). Mixtures of distributions: Inference and estimation. In Markov Chain Monte Carlo in Practice (W. R. Gilks, S. Richardson and D. J. Spiegelhalter, eds.) Chapman & Hall, London. · Zbl 0849.62013
[34] Roeder, K. (1990). Density estimation with confidence sets exemplified by superclusters and voids in the galaxies. J. Amer. Statist. Assoc. 85 617-624. · Zbl 0704.62103 · doi:10.2307/2289993
[35] Sheather, S. J. and Jones, M. C. (1991). A reliable data-based bandwidth selection method for kernel density estimation. J. Roy. Statist. Soc. Ser. B 53 683-690. JSTOR: · Zbl 0800.62219 · http://links.jstor.org/sici?sici=0035-9246%281991%2953%3A3%3C683%3AARDBSM%3E2.0.CO%3B2-9&origin=euclid
[36] Stephens, D. A. and Fisch, R. D. (1998). Bayesian analysis of quantitative trait locus data using reversible jump Markov chain Monte Carlo. Biometrics 54 1334-1367. · Zbl 1058.62657 · doi:10.2307/2533661
[37] Stephens, M. (1997). Bayesian Methods for Mixtures of Normal Distributions. Ph.D. thesis, Univ. Oxford. Available from www.stats.ox.ac.uk/ stephens. URL: · http://www.stats.ox.ac.uk/
[38] Stoyan, D., Kendall, W. S. and Mecke, J. (1987). Stochastic Geometry and Its Applications, 1st ed. Wiley, New York. · Zbl 0622.60019
[39] Tierney, L. (1996). Introduction to general state-space Markov chain theory. In Markov Chain Monte Carlo in Practice (W. R. Gilks, S. Richardson and D. J. Spiegelhalter, eds.) 59-74. Chapman & Hall, London. · Zbl 0849.60072
[40] Titterington, D. M., Smith, A. F. M. and Makov, U. E. (1985). Statistical Analysis of Finite Mixture Distributions. Wiley, New York. · Zbl 0646.62013
[41] Venables, W. N. and Ripley, B. D. (1994). Modern Applied Statistics with S-Plus. Springer, New York. · Zbl 0806.62002
[42] Venables, W. N. and Ripley, B. D. (1997). Modern Applied Statistics with S-Plus, 2nd ed. Springer, New York. · Zbl 0876.62001
[43] West, M. (1993). Approximating posterior distributions by mixtures. J. Roy. Statist. Soc. Ser. B 55 409-422. JSTOR: · Zbl 0800.62221 · http://links.jstor.org/sici?sici=0035-9246%281993%2955%3A2%3C409%3AAPDBM%3E2.0.CO%3B2-T&origin=euclid
[44] Wilson, S. R. (1982). Sound and exploratory data analysis. In COMPSTAT 1982. Proceedings in Computational Statistics (H. Caussinus, P. Ettinger and R. Tamassone, eds.) 447-450. Physica, Vienna.