Drees, Holger; de Haan, Laurens; Resnick, Sidney How to make a Hill plot. (English) Zbl 1106.62333 Ann. Stat. 28, No. 1, 254-274 (2000). Summary: An abundance of high quality data sets requiring heavy tailed models necessitates reliable methods of estimating the shape parameter governing the degree of tail heaviness. The Hill estimator is a popular method for doing this but its practical use is encumbered by several difficulties. We show that an alternative method of plotting Hill estimator values is more revealing than the standard method unless the underlying data comes from a Pareto distribution. Cited in 69 Documents MSC: 62G32 Statistics of extreme values; tail inference 62G05 Nonparametric estimation 62G30 Order statistics; empirical distribution functions Keywords:Estimation; extreme value index; heavy tails; Hill estimator; order statistics; Pareto tails; regular variation × Cite Format Result Cite Review PDF Full Text: DOI Euclid References: [1] Beirlant, J., Dierckx, G., Goegebeur, Y. and Matthys, G. (1999). Tail index estimation and an exponential regression model. Extremes 2 177-200. · Zbl 0947.62034 · doi:10.1023/A:1009975020370 [2] Beirlant, J., Vynckier, P. and Teugels, J. L. (1996). Tail index estimation, Pareto quantile plots, and regression diagnostics. J. Amer. Statist. Assoc. 91 1659-1667. JSTOR: · Zbl 0881.62077 · doi:10.2307/2291593 [3] Bingham, N. H., Goldie, C. M. and Teugels, J. L. (1987). Regular Variation. Cambridge Univ. Press. · Zbl 0617.26001 [4] Breiman, L. (1968). Probability. Addison-Wesley, Reading, MA. · Zbl 0174.48801 [5] Danielsson, J., de Haan, L., Peng, L. and de Vries, C. G. (1998). Using a bootstrap method to choose the sample fraction in tail index estimation. J. Multivariate Anal. · Zbl 0976.62044 [6] Davis, R. and Resnick, S. (1996). Limit theory forbilinearprocesses with heavy tailed noise. Ann. Appl. Probab. 6 1191-1210. · Zbl 0879.60053 · doi:10.1214/aoap/1035463328 [7] de Haan, L., Peng, L. and Pereira, T. T. (1997). A bootstrap-based method to achieve optimality in estimating the extreme-value index. Extremes. · Zbl 0972.62014 · doi:10.1023/A:1009900215680 [8] de Haan, L. and Stadtm üller, U. (1996). Generalized regular variation of second order. J. Austral. Math. Soc. Ser. A 61 381-395. · Zbl 0878.26002 · doi:10.1017/S144678870000046X [9] Dekkers, A. L. M. and de Haan, L. (1993). Optimal choice of sample fraction in extreme-value estimation. J. Multivariate Anal. 47 173-195. Drees, H. (1998a). On smooth statistical tail functionals. Scand. J. Statist. 25 187-210. Drees, H. (1998b). Estimating the extreme value index. Habilitation thesis, Univ. Cologne. · Zbl 0797.62016 · doi:10.1006/jmva.1993.1078 [10] Drees, H. and Kaufmann, E. (1998). Selecting the optimal sample fraction in univariate extreme value estimation. Stochastic Process. Appl. 75 149-172. · Zbl 0926.62013 · doi:10.1016/S0304-4149(98)00017-9 [11] Jansen, D. and de Vries, C. (1991). On the frequency of large stock returns: putting booms and busts into perspective. Rev. Econom. Statist. 73 18-24. [12] Kaufmann, E. and Reiss, R.-D. (1998). Strong approximation of the Hill estimator process. Statist. Probab. Lett. 39 347-354. · Zbl 0915.60029 · doi:10.1016/S0167-7152(98)00079-0 [13] Leland, W., Taqqu, M., Willinger, W. and Wilson, D. (1994). On the self-similarnature of ethernet traffic (extended version). IEEE/ACM Trans. Networking 2 1-15. [14] Mason, D. (1982). Laws of large numbers for sums of extreme values. Ann. Probab. 10 754-764. · Zbl 0493.60039 · doi:10.1214/aop/1176993783 [15] Mason, D. and Turova, T. S. (1994). Weak convergence of the Hill estimator process. In Extreme Value Theory and Applications (J. Galambos, J. Lechnerand E. Simin, eds.) 419-431. Kluwer, Dordrecht. [16] McNeil, A. (1997). Estimating the tails of loss severity distributions using extreme value theory. Astin Bull. 27 125-139. [17] Reiss, R.-D. (1989). Approximate Distributions of Order Statistics. Springer, New York. Resnick, S. (1997a). Discussion of the Danish data on large fire insurance losses. Astin Bull. 27 139-151. Resnick, S. (1997b). Heavy tail modeling and teletraffic data. Ann. Statist. 25 1805-1869. · Zbl 0682.62009 [18] Resnick, S. and St aric a, C. (1995). Consistency of Hill’s estimatorfordependent data. J. Appl. Probab. 32 139-167. JSTOR: · Zbl 0836.60020 · doi:10.2307/3214926 [19] Resnick, S. and St aric a, C. (1997). Smoothing the Hill estimator. Adv. in Appl. Probab. 29 271- 293. JSTOR: · Zbl 0873.60021 · doi:10.2307/1427870 [20] Resnick, S. and St aric a, C. (1998). Tail index estimation fordependent data. Ann. Appl. Probab. 8 1156-1183. · Zbl 0942.60037 · doi:10.1214/aoap/1028903376 [21] Resnick, S. and van den Berg, E. (2000). Sample correlation behavior for the heavy tailed general bilinearprocess. Stochastic Model 16. · Zbl 0955.60028 · doi:10.1080/15326340008807586 [22] Revuz, D. and Yor, M. (1991). Continuous Martingales and Brownian Motion. Springer, Berlin. · Zbl 0731.60002 [23] Rootzen, H., Leadbetter, M. and de Haan, L. (1990). Tail and quantile estimation forstrongly mixing stationary sequences. Technical Report 292, Center for Stochastic Processes, Dep. Statistics, Univ. North Carolina. This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.