zbMATH — the first resource for mathematics

Homogeneous statistical solutions and local energy inequality for 3D Navier-Stokes equations. (English) Zbl 1106.76017
Summary: We are interested in space-time spatially homogeneous statistical solutions of Navier-Stokes equations in space dimension three. We first review the construction of such solutions, and introduce convenient tools to study the pressure gradient. Then we show that given a spatially homogeneous initial measure with finite energy density, one can construct a homogeneous statistical solution concentrated on weak solutions which satisfy the local energy inequality.

76D06 Statistical solutions of Navier-Stokes and related equations
76M35 Stochastic analysis applied to problems in fluid mechanics
35Q30 Navier-Stokes equations
Full Text: DOI
[1] CKN82 Caffarelli L., Kohn R., Nirenberg L. (1982). Partial regularity of suitable weak solutions of the Navier-Stokes equations. Comm. Pure Appl. Math. 35:771–831 · Zbl 0509.35067 · doi:10.1002/cpa.3160350604
[2] Foi72 Foias C. Statistical study of the Navier-Stokes equations, I. Rend. Sem. Mat. Univ. Padova 48, 219–348 (1972); idem, II, 49:9–123 (1973).
[3] FMRT01 Foias C., Manley O., Rosa R., Temam R. (2001). Navier-Stokes Equations and Turbulence. Cambridge Univ. Press, Cambridge · Zbl 0994.35002
[4] FT80 Foias C., Temam R. (1980). Homogeneous Statistical Solutions of Navier-Stokes Equations. Indiana Univ. Math. J. 29:913–957 · Zbl 0463.76056 · doi:10.1512/iumj.1980.29.29062
[5] GS75 Gihman I.I., Skorohod V.V. (1975). The Theory of Stochastic Processes, 1. Springer Verlag, Berlin · Zbl 0305.60027
[6] Hop52 Hopf E. (1952). Statistical hydrodynamics and functional calculus. J. Rat. Mech. Anal. 1:87–123 · Zbl 0049.41704
[7] Lem02 Lemarié-Rieusset P.-G. (2002). Recent developments in the Navier-Stokes problem. Chapman & Hall/CRC Press, London · Zbl 1034.35093
[8] Sch77 Scheffer V. (1977). Hausdorff measures and the Navier-Stokes equations. Commun. Math. Phys. 55:97–112 · Zbl 0357.35071 · doi:10.1007/BF01626512
[9] VF77 Vishik M.I., Fursikov A.V. (1977). Solutions statistiques homogènes des systèmes différentiels paraboliques et du système de Navier-Stokes. Ann. Scuola Norm. Sup. Pisa, série IV, IV:531–576
[10] VF78 Vishik M.I., Fursikov A.V. (1978). Translationally homogeneous statistical solutions and individual solutions with infinite energy of a system of Navier-Stokes equations. Siberian Math. J. 19:710–729 · Zbl 0412.35078 · doi:10.1007/BF00973601
[11] VF88 Vishik M.I., Fursikov A.V. (1988). Mathematical Problems of Statistical Hydromechanics. Kluwer Academic Publishers, Dordrecht · Zbl 0688.35077
[12] VK88 Vishik M.I., Komech A.I.: Periodic approximations of homogeneous measures. In: [VF88, Appendix II].
[13] VTC87 Vakhania N.N., Tarieladze V.I., Chobanyan S.A. (1987). Probability Distributions on Banach Spaces. D. Reidel Publishing Company, Dordrecht
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.