zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Finite-volume compact schemes on staggered grids. (English) Zbl 1106.76406
Summary: Compact finite-difference schemes have been recently used in several Direct Numerical Simulations of turbulent flows, since they can achieve high-order accuracy and high resolution without exceedingly increasing the size of the computational stencil. The development of compact finite-volume schemes is more involved, due to the appearance of surface and volume integrals. While {\it J. M. C. Pereira} et al. [J. Comput. Phys. 167, No. 1, 217--243 (2001; Zbl 1013.76054)] and Smirnov et al. [AIAA Paper, 2546, 2001] focused on collocated grids, in this paper we use the staggered grid arrangement. Compact schemes can be tuned to achieve very high resolution for a given formal order of accuracy. We develop and test high-resolution schemes by following a procedure proposed by {\it S. K. Lele} [J. Comput. Phys. 103, No. 1, 16--42 (1992; Zbl 0759.65006)] which, to the best of our knowledge, has not yet been applied to compact finite-volume methods on staggered grids. Results from several one- and two-dimensional simulations for the scalar transport and Navier--Stokes equations are presented, showing that the proposed method is capable to accurately reproduce complex steady and unsteady flows.

MSC:
76M12Finite volume methods (fluid mechanics)
76D05Navier-Stokes equations (fluid dynamics)
WorldCat.org
Full Text: DOI
References:
[1] Tennekes, H.; Lumley, J. L.: A first course in turbulence. (1972) · Zbl 0285.76018
[2] Kreiss, H. O.; Orszag, S. A.; Israeli, M.: Numerical simulation of viscous incompressible flows. Annual review of fluid mechanics 6, No. 281 (1974) · Zbl 0295.76016
[3] Hirsh, R. S.: Higher order accurate difference solutions of fluid mechanics problems by a compact differencing technique. Journal of computational physics 19, No. 90 (1975) · Zbl 0326.76024
[4] Adam, Y.: Journal of computational physics. 24, No. 10 (1977)
[5] Mansour, N. N.; Moin, P.; Reynolds, W. C.; Ferziger, J. H.: Turbulent shear flows I. (1977)
[6] Rubin, S. G.; Khosla, P. K.: Polynomial interpolation methods for viscous flow calculations. Journal of computational physics 24, No. 217 (1977) · Zbl 0362.76057
[7] Lele, S. K.: Compact finite difference schemes with spectral-like resolution. Journal of computational physics 103, 16-42 (1992) · Zbl 0759.65006
[8] Meinke, M.; Schröder, W.; Krause, E.; Rister, Th.: A comparison of second- and sixth-order methods for large-eddy simulations. Computers and fluids 31, 695-718 (2002) · Zbl 1027.76025
[9] Liou, M. S.; Steffen, C. J.: A new flux splitting scheme. Journal of computational physics 107, 23-39 (1993) · Zbl 0779.76056
[10] Jiang, L.; Shan, H.; Liu, C.: Direct numerical simulation of boundary-layer receptivity for subsonic flow around airfoil. Recent advances in DNS and LES Proceedings of the second AFOSR conference held at rutgers (1999)
[11] M.R. Visbal, D.V. Gaitonde, High-order accurate methods for unsteady vortical flows on curvilinear meshes, AIAA Paper, 1998, pp. 98--131
[12] Boersma, B. J.: Direct numerical simulation of jet noise. DNS/LES progress and challenges Proceedings of the third AFOSR international conference, 589-596 (2001)
[13] Morinishi, Y.; Lund, T. S.; Vasilyev, O. V.; Moin, P.: Fully conservative higher order finite difference schemes for incompressible flow. Journal of computational physics 143, 90-124 (1998) · Zbl 0932.76054
[14] Harlow, F. H.; Welch, J. E.: Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Physics of fluids 8, No. 12, 2182-2189 (1965) · Zbl 1180.76043
[15] Vasilyev, O. V.: High-order finite difference schemes on non-uniform meshes with good conservation properties. Journal of computational physics 157, 746-761 (2000) · Zbl 0959.76063
[16] Nagarajan, S.; Lele, S. K.; Ferziger, J. H.: A robust high-order compact method for large eddy simulation. Journal of computational physics 191, 392-419 (2003) · Zbl 1051.76030
[17] Ferziger, J. H.; Perić, M.: Computational methods for fluid dynamics. (1999) · Zbl 0943.76001
[18] Pereira, J. M. C.; Kobayashi, M. H.; Pereira, J. C. F.: A fourth-order-accurate finite volume compact method for the incompressible Navier--Stokes solutions. Journal of computational physics 167, 217-243 (2001) · Zbl 1013.76054
[19] S. Smirnov, C. Lacor, M. Baelmans, A finite volume formulation for compact scheme with applications to LES, AIAA Paper 2001-2546, 15th AIAA Computational Fluid Dynamics Conference, June 11--14, Anaheim, CA, 2001
[20] Le, H.; Moin, P.: An improvement of fractional step methods for the incompressible Navier--Stokes equations. Journal of computational physics 92, 369-379 (1991) · Zbl 0709.76030
[21] Temperton, C.: Algorithms for the solution of cyclic tridiagonal systems. Journal of computational physics 19, 317-323 (1975) · Zbl 0319.65024
[22] Lilek, Ž.; Perić, M.: A fourth-order finite volume method with collocated variable arrangement. Computers and fluids 24, 239-252 (1995) · Zbl 0826.76066
[23] Jiang, L.; Shan, H.; Liu, C.: Weighted compact scheme. DNS/LES progress and challenges Proceedings of the third AFOSR international conference, 129-144 (2001) · Zbl 1044.76046
[24] Kim, J. W.; Lee, D. J.: Optimized compact finite difference schemes with maximum resolution. AIAA journal 34, No. 5, 887-893 (1996) · Zbl 0900.76317
[25] Kobayashi, M. H.: On a class of Padé finite volume methods. Journal of computational physics 156, 137-180 (1999) · Zbl 0940.65092
[26] Lomax, H.; Pulliam, T. H.; Zingg, D. W.: Fundamentals of computational fluid dynamics. (2001) · Zbl 0970.76002
[27] Anderson, J. D.: Computational fluid dynamics: the basics with applications. (1995)
[28] Gresho, P. M.: On the theory of semi-implicit projection methods for viscous incompressible flow and its implementation via a finite element method that also introduces a nearly consistent mass matrix. Part 1: theory. International journal of numerical methods for fluids 11, 587-620 (1990) · Zbl 0712.76035
[29] Armfield, S.; Street, R.: An analysis and comparison of the time accuracy of fractional-step methods for the Navier--Stokes equations on staggered grids. International journal of numerical methods for fluids 38, 255-282 (2002) · Zbl 1027.76033
[30] Babu, V.; Korpela, S. A.: On the direct solution of Poisson’s equation on a non-uniform grid. Journal of computational physics 104, 93-98 (1993) · Zbl 0765.65095
[31] Sharatchandra, M. C.; Rhode, D. L.: New, strongly conservative finite-volume formulation for fluid flows in irregular geometries using contravariant velocity components: part 1, theory. Numerical heat transfer, part B 26, 39-52 (1994)
[32] Sharatchandra, M. C.; Rhode, D. L.: New, strongly conservative finite-volume formulation for fluid flows in irregular geometries using contravariant velocity components: part 2, assessment. Numerical heat transfer, part B 26, 53-62 (1994)
[33] Gaitonde, D. V.; Shang, J. S.; Young, J. L.: Practical aspects of higher-order numerical schemes for wave-propagation phenomena. International journal for numerical methods in engineering 45, 1849-1869 (1999) · Zbl 0959.65103
[34] Tannehill, J. C.; Anderson, D. A.; Pletcher, R. H.: Computational fluid mechanics and heat transfer. (1997) · Zbl 0569.76001
[35] S. Smirnov, C. Lacor, B. Lessani, J. Meyers, M. Baelmans, A finite volume formulation for compact schemes on arbitrary meshes with applications to RANS and LES, European Congress on Computational Methods in Applied Sciences and Engineering, September 11--14, Barcelona, 2000
[36] Gamet, L.; Ducros, F.; Nicoud, F.; Poinsot, T.: Compact finite difference schemes on non-uniform meshes. Application to direct numerical simulations of compressible flows. International journal of numerical methods for fluids 29, 159-191 (1999) · Zbl 0939.76060
[37] Verstappen, R. W. C.P.; Veldman, A. E. P.: Spectro-consistent discretization of Navier--Stokes: a challenge to RANS and LES. Journal of engineering mathematics 34, 163-179 (1998) · Zbl 0917.76059
[38] The MathWorks, Symbolic Math Toolbox for use with MATLAB{\circledR}, 1993
[39] Patankar, S. V.: Numerical heat transfer and fluid flow. (1980) · Zbl 0521.76003
[40] Leonard, B. P.: Elliptic systems: finite difference method iv. Handbook of numerical heat transfer, 348-357 (1988)
[41] Botella, O.; Peyret, R.: Benchmark spectral results on the lid-driven cavity flow. Computers and fluids 27, 421-433 (1998) · Zbl 0964.76066
[42] Nobile, E.: Simulation of time-dependent flow in cavities with the additive-correction multigrid method. Numerical heat transfer, part B 30, 315-370 (1996)
[43] Behnia, M.; De Vahl Davis, G.; Stella, F.; Guj, G.: A comparison of velocity-vorticity and stream function-vorticity formulations for pr=0. Notes in numerical fluid mechanics 27, 25-34 (1990) · Zbl 0715.76060
[44] Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; Vetterling, W. T.: Numerical recipes: the art of scientific computing. (1992) · Zbl 0845.65001