Stabilization of thermal lattice Boltzmann models. (English) Zbl 1106.82353

A three-dimensional thermal lattice-Boltzmann model with two relaxation times to separately control viscosity and thermal diffusion is developed. Numerical stability of the model is significantly improved using Lax-Wendroff advection to provide and adjustable time step. Good agreement with a conventional fiitedifference Navier-Stokes solver is obtained in modeling compressible Rayleigh-Bénard convestion when boundary conditions are treated similarly.


82C40 Kinetic theory of gases in time-dependent statistical mechanics
76R99 Diffusion and convection
76M99 Basic methods in fluid mechanics
Full Text: DOI


[1] U. Frisch, B. Hasslacher, and Y. Pomeau Lattice gas automata for the Navier-Stokes equations.Phys. Rev. Lett. 56:1505 (1986). · doi:10.1103/PhysRevLett.56.1505
[2] U. Frisch, D. d’Humières, B. Hasslacher, P. Lallemand, Y. Pomeau, and J.-P. Rivet, Lattice gas hydrodynamics in two and three dimensions.Complex Systems 1:649 (1987). · Zbl 0662.76101
[3] S. Chen, M. Lee, K. H. Zhao, and G. D. Doolen, A lattice gas model with temperature,Physica D 37:42 (1989). · Zbl 0687.76080 · doi:10.1016/0167-2789(89)90116-4
[4] S. Y. Chen, H. D. Chen, G. D. Doolen, S. Gutman, and M. Lee, A lattice gas model for thermohydrodynamics,J. Stat. Phys. 62:1121 (1991). · doi:10.1007/BF01128180
[5] G. McNamara and G. Zanetti, Use of the Boltzman equation to simulate lattice-gas automata,Phys. Rev. Lett. 61:2332 (1988). · doi:10.1103/PhysRevLett.61.2332
[6] F. J. Higuera and J. Jimensez, Boltzmann aproach to lattice gas simulations.Europhys. Lett. 9:663 (1989). · doi:10.1209/0295-5075/9/7/009
[7] F. J. Higuera, S. Succi, and R. Benzi, Lattice gas dynamics with enhanced collisions,Europhys. Lett. 9:345 (1989). · doi:10.1209/0295-5075/9/4/008
[8] A. Bartoloni, C. Battista, S. Cabasino, P. S. Paolucci, J. Pech, R. Sarno, G. M. Todesco, M. Torelli, W. Tross, P. Vicini, R. Benzi, N. Cabibbo, F. Massaioli, and R. Tripiccione, LBE simulations of Rayleigh-Bénard convection on the APE100 parallel processor.Int. J. Mod. Phys. C 4:993 (1993). · doi:10.1142/S012918319300077X
[9] F. J. Alexander, S. Chen, and J. D. Steling, Lattice Boltzmann theromohydrodrodynamics,Phys. Rev. E 47:2249 (1993). · doi:10.1103/PhysRevE.47.403
[10] Y. Chen, H. Ohashi, and M. Akiyama, Thermal lattice Bahatnagar-Gross-Krook model without nonlinear deviations in macrodynamci equations,Phys. Rev. E 50:2776 (1994). · doi:10.1103/PhysRevE.50.2776
[11] G. R. McNamara and B. Alder, Analysis of the lattice Boltzmann treatment of hydrodynmics,Physica A 194:218 (1993), · Zbl 0941.82527 · doi:10.1016/0378-4371(93)90356-9
[12] Y. H. Qian, D. d’Humières, and P. Lallemand, Lattice BGK models for Navier-Stokes quation.Europhys. Lett. 17:479 (1992). · Zbl 1116.76419 · doi:10.1209/0295-5075/17/6/001
[13] S. Chen, Z. Wang, X. Shan, and G. D. Doolen, Lattice Boltzmann computational fluid dynamics in three dimensions.J. Stat. Phys. 68:379 (1992). · Zbl 0925.76516 · doi:10.1007/BF01341754
[14] R. Cornubert, D. d’Humières, and D. Levermore, A Knudsen layer theory for lattice gases,Physcia D 47:241 (1991) · Zbl 0717.76100 · doi:10.1016/0167-2789(91)90295-K
[15] I. Ginzbourg and P. M. Adler, Boundary flow condition analysis for the three-dimensional lattice Boltzmann model,J. Phys. II France 4:191 (1994). · doi:10.1051/jp2:1994123
[16] D. P. Ziegler, Boundary conditions for lattice Boltzmann simulations,J. Stat. Phys. 71:1171 (1993). · Zbl 0943.82552 · doi:10.1007/BF01049965
[17] P. A. Skordos, Initial and boundary conditions for the lattice Boltzmann method,Phys. Rev. E 48:4823 (1993). · doi:10.1103/PhysRevE.48.4823
[18] F. J. Higuera, Lattice gas method based on the Chapman-Enskog expansion,Phys. Fluids A 2:1049 (1990). · Zbl 0709.76123 · doi:10.1063/1.857645
[19] A. L. Garcia,Numerical Methods for Physics (Prentice-Hall, Englewood Cliffs, New Jersey, 1994), Chapter 6. · Zbl 0798.65098
[20] S. Gauthier, A spectral collocation method for two-dimensional compressible convection,J. Comput. Phys. 75:217 (1988). · Zbl 0632.76105 · doi:10.1016/0021-9991(88)90108-8
[21] G. McNamara and B. Alder, InMicroscopic Simulations of Complex Hydrodynamic Phenomena, M. Mareschal and B. L. Holian, eds. (Penum Press, New York, 1992).
[22] R. Benzi, S. Succi, and M. Vergassola, The lattice Boltzmann equation: Theory and applications.Phys. Rep. 222:145 (1992). · doi:10.1016/0370-1573(92)90090-M
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.