[1] |
I. Atwater, C. M. Dawson, A. Scott, G. Eddlestone, and E. Rojas, “Oscillatory behavior in electrical activity from pancreatic \beta -cell,” Hormone and Metabolic Research, vol. 10, pp. 100-107, 1980. |

[2] |
T. R. Chay, “Chaos in a three-variable model of an excitable cell,” Physica D, vol. 16, no. 2, pp. 233-242, 1985. · Zbl 0582.92007
· doi:10.1016/0167-2789(85)90060-0 |

[3] |
T. R. Chay and J. Keizer, “Minimal model for membrane oscillations in the pancreatic \beta -cell,” Biophysical Journal, vol. 42, no. 2, pp. 181-190, 1983. |

[4] |
J. Duarte and J. Sousa Ramos, “Topological entropy as a measure of chaos in forced excitable systems,” International Journal of Pure and Applied Mathematics, vol. 4, no. 2, pp. 165-180, 2003. · Zbl 1029.37009 |

[5] |
R. FitzHugh, “Impulses and physiological states in theoretical models of nerve membrane,” Biophysical Journal, vol. 1, pp. 445-466, 1961. |

[6] |
J. Guckenheimer, R. Harris-Warrick, J. Peck, and A. Willms, “Bifurcation, bursting, and spike frequency adaptation,” Journal of Computational Neuroscience, vol. 4, no. 3, pp. 257-277, 1997. · Zbl 0888.92010
· doi:10.1023/A:1008871803040 |

[7] |
B.-L. Hao and W.-M. Zheng, Applied Symbolic Dynamics and Chaos, vol. 7 of Directions in Chaos, World Scientific, New Jersey, 1998. · Zbl 0914.58017 |

[8] |
J. L. Hindmarsh and R. M. Rose, “A model of neuronal bursting using three coupled 1st order differential equations,” Proceedings of the Royal Society of London, vol. B221, pp. 87-102, 1984.
· doi:10.1098/rspb.1984.0024 |

[9] |
A. L. Hodgkin and A. F. Huxley, “A quantitative description of membrane current and its application to conduction and excitation in nerve,” The Journal of Physiology, vol. 117, no. 4, pp. 500-544, 1952. |

[10] |
E. M. Izhikevich, “Neural excitability, spiking and bursting,” International Journal of Bifurcation and Chaos, vol. 10, no. 6, pp. 1171-1266, 2000. · Zbl 1090.92505
· doi:10.1142/S0218127400000840 |

[11] |
E. M. Izhikevich, “Resonance and selective communication via bursts in neurons having subthreshold oscillations,” BioSystems, vol. 67, no. 1-3, pp. 95-102, 2002.
· doi:10.1016/S0303-2647(02)00067-9 |

[12] |
E. M. Izhikevich, N. S. Desai, E. C. Walcott, and F. C. Hoppensteadt, “Bursts as a unit of neural information: selective communication via resonance,” Trends in Neuroscience, vol. 26, no. 3, pp. 161-167, 2003.
· doi:10.1016/S0166-2236(03)00034-1 |

[13] |
J. P. Lampreia and J. Sousa Ramos, “Computing the topological entropy of bimodal maps,” in European Conference on Iteration Theory (Caldes de Malavella, 1987), pp. 431-437, World Scientific, New Jersey, 1989. |

[14] |
J. P. Lampreia and J. Sousa Ramos, “Symbolic dynamics of bimodal maps,” Portugaliae Mathematica, vol. 54, no. 1, pp. 1-18, 1997. · Zbl 0877.58020
· eudml:47756 |

[15] |
J. E. Lisman, “Bursts as a unit of neural information: making unreliable synapses reliable,” Trends in Neuroscience, vol. 20, no. 1, pp. 38-43, 1997.
· doi:10.1016/S0166-2236(96)10070-9 |

[16] |
Georgi S. Medvedev, “Reduction of a model of an excitable cell to a one-dimensional map,” Physica D, vol. 202, no. 1-2, pp. 37-59, 2005. · Zbl 1144.92307
· doi:10.1016/j.physd.2005.01.021 |

[17] |
J. Milnor and W. Thurston, “On iterated maps of the interval,” in Dynamical Systems (College Park, Md, 1986-1987), vol. 1342 of Lecture Notes in Math., pp. 465-563, Springer, Berlin, 1988. · Zbl 0664.58015 |

[18] |
C. Mira, Chaotic Dynamics. From the One-Dimensional Endomorphism to the Two-Dimensional Diffeomorphism, World Scientific, Singapore, 1987. · Zbl 0641.58002 |

[19] |
M. Misiurewicz and W. Szlenk, “Entropy of piecewise monotone mappings,” Studia Mathematica, vol. 67, no. 1, pp. 45-63, 1980. · Zbl 0445.54007
· eudml:218304 |

[20] |
P. F. Pinsky and J. Rinzel, “Intrinsic and network rhythmogenesis in a reduced Traub model for CA3 neurons,” Journal of Computational Neuroscience, vol. 1, no. 1-2, pp. 39-60, 1994.
· doi:10.1007/BF00962717 |

[21] |
M. I. Rabinovich and H. D. Abarbanel, “The role of chaos in neural systems,” Neuroscience, vol. 87, no. 1, pp. 5-14, 1998.
· doi:10.1016/S0306-4522(98)00091-8 |

[22] |
X.-J. Wang, “Genesis of bursting oscillations in the Hindmarsh-Rose model and homoclinicity to a chaotic saddle,” Physica D, vol. 62, no. 1-4, pp. 263-274, 1993. · Zbl 0783.58053
· doi:10.1016/0167-2789(93)90286-A |